首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We have recently reported that the organic bilayer of 3,4,9,10-perylenetetracarboxyl-bisbenzimidazole (PTCBI, n-type semiconductor) and 29H,31H-phthalocyanine (H2Pc, p-type semiconductor), which is a part of a photovoltaic cell, acts as a photoanode in the water phase (Abe et al., ChemPhysChem 5:716, [2004]); in that case, the generation of the photocurrent involving an irreversible thiol oxidation at the H2Pc/water interface took place to be coupled with hole conduction through the H2Pc layer, based on the photophysical character of the bilayer. In the present work, the photoelectrode characteristics of the bilayer were investigated in the water phase containing a redox molecule , where the photo-induced oxidation and reduction for the couple were found to take place at the bilayer. The photoanodic current involving the oxidation efficiently occurred at the interface of H2Pc/water, similar to the previous example. In the view of the voltammograms obtained, it was noted that there are pin-holes in the H2Pc layer of the bilayer, leading to a cathodic reaction with at the PTCBI surface especially in the dark; that is, the band bending at the PTCBI/water interface can essentially be reduced by applying a negative potential [e.g., < ∼ 0 V (vs Ag/AgCl)] to the PTCBI, when the cathodic reaction may take place through the conduction band of the PTCBI. Moreover, under that applied potential condition of irradiation, the photogenerated electron carrier part can move to the PTCBI surface, thus enhancing the reduction of .  相似文献   

2.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

3.
As a new method, stable-isotope dilution activation analysis has been developed. When an element consists of at least two stable isotopes which are converted easily to the radioactive nuclides through nuclear reactions, the total amount of the element (xg) can be determined by irradiating simultaneously the duplicated sample containing small amounts of either enriched isotope (y g), and by using the following equation. $${{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} \mathord{\left/ {\vphantom {{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}$$ Where M and M* are atomic weights of the element to be determined and the enriched isotope used as a spike,θ 1 andθ 2 are natural abundances of two stable isotopes in the element,θ 1 * andθ 2 * are isotopic compositions of the above isotopes in the enriched isotope, and R and R* are counting ratios of gamma-rays emitted by two radionuclides produced in the sample and the isotopic mixture. Neither calibration standard nor correction of irradiation conditions are necessary for this method. Usefulness of the present method was verified by photon activations of Ca, Zn and Ce using isotopically enriched48ca,68Zn and142Ce.  相似文献   

4.
The electropolymerization of aniline on a palladized aluminum electrode (Pd/Al) by potentiodynamic as well as potentiostatic methods is described. The effect of the monomer concentration between 0.01 and 0.4 M on the polyaniline (PANI) formation and its growth on the Pd/Al electrode was investigated and a suitable concentration of 0.2 M is suggested. A similar study was carried out to investigate the effect of sulfuric acid concentration and 0.1 M sulfuric acid was chosen. A study on the influence of electropalladization time on the polymer formation and its growth suggested a convenient time of 40 s. The stability of the PANI film on the Pd/Al electrode was studied as function of the potential imposed on the electrode. For applied electrode potentials of 0.1–0.7 V, the first-order degradation rate constant, k, of PANI film varies between 1×10−6 and 2×10−5 s−1, and a relatively low slope (i.e., 2.2) was obtained for the plot of log k versus E. The coatings were characterized by scanning electron microscopy (SEM), and cyclic voltammetric behavior of the PANI-deposited Pd/Al electrode is discussed. The electrocatalytic activity of the PANI-deposited Pd/Al electrode against para-benzoquinone/hydroquinone (Q/H2Q) and redox systems were investigated and on the basis of of the corresponding cyclic voltammograms and the redox systems were identified as the reversible and quasi-reversible systems, respectively.  相似文献   

5.
Hybrid multilayer films composed of poly(ethylenimine) and the Keggin-type polyoxometalates [ SiW11O39 ]8 - ( SiW11 ) {\left[ {{\hbox{Si}}{{\hbox{W}}_{{11}}}{{\hbox{O}}_{{39}}}} \right]^{{8} - }}\left( {{\hbox{Si}}{{\hbox{W}}_{{11}}}} \right) and [ SiW11CoII( H2O )O39 ]6 - ( SiW11Co ) {\left[ {{\hbox{Si}}{{\hbox{W}}_{{11}}}{\hbox{C}}{{\hbox{o}}^{\rm{II}}}\left( {{{\hbox{H}}_2}{\hbox{O}}} \right){{\hbox{O}}_{{39}}}} \right]^{{6} - }}\left( {{\hbox{Si}}{{\hbox{W}}_{{11}}}{\hbox{Co}}} \right) were prepared on glassy carbon electrodes by layer-by-layer self-assembly, and were characterized by cyclic voltammetry and scanning electron microscopy. UV-vis absorption spectroscopy of films deposited on quartz slides was used to monitor film growth, showing that the absorbance values at characteristic wavelengths of the multilayer films increase almost linearly with the number of bilayers. Cyclic voltammetry indicates that the electrochemical properties of the polyoxometalates are maintained in the multilayer films, and that the first tungsten reduction process for immobilized SiW11 and SiW11Co is a surface-confined process. Electron transfer to [ Fe( CN )6 ]3 - /4 - {\left[ {{\hbox{Fe}}{{\left( {\hbox{CN}} \right)}_6}} \right]^{{3} - /{4} - }} and [ Ru( NH3 )6 ]3 + /2 + {\left[ {{\hbox{Ru}}{{\left( {{\hbox{N}}{{\hbox{H}}_3}} \right)}_6}} \right]^{{3} + /{2} + }} as electrochemical probes was also investigated by cyclic voltammetry. The (PEI/SiW11Co)n multilayer films showed excellent electrocatalytic reduction properties towards nitrite, bromate and iodate.  相似文献   

6.
Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using ferrocene methanol (FcMeOH), and approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and as mediators, and the use of results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators and In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.Dedicated to Alan, a good friend and colleague on his 60th birthday.  相似文献   

7.
The standard Gibbs energy of formation of Pr2TeO6 $ (\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)) $ was derived from its vapour pressure in the temperature range of 1,400–1,480 K. The vapour pressure of TeO2 (g) was measured by employing a thermogravimetry-based transpiration method. The temperature dependence of the vapour pressure of TeO2 over the mixture Pr2TeO6 (s) + Pr2O3 (s) generated by the incongruent vapourization reaction, Pr2TeO6 (s) = Pr2O3 (s) + TeO2 (g) + ½ O2 (g) could be represented as: $ { \log }\left\{ {{{p\left( {{\text{TeO}}_{ 2} ,\;{\text{g}}} \right)} \mathord{\left/ {\vphantom {{p\left( {{\text{TeO}}_{ 2} ,\;{\text{g}}} \right)} {{\text{Pa}} \pm 0.0 4}}} \right. \kern-0em} {{\text{Pa}} \pm 0.0 4}}} \right\} = 19. 12- 27132\; \left({\rm{{{\text{K}}}}/T} \right) $ . The $ \Updelta_{\text{f}} G^{^\circ } \;\left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} } \right) $ could be represented by the relation $ \left\{ {{{\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)} \mathord{\left/ {\vphantom {{\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}}} \right. \kern-0em} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}} \pm 5.0} \right\} = - 2 4 1 5. 1+ 0. 5 7 9 3\;\left(T/{\text{K}}\right) .$ Enthalpy increments of Pr2TeO6 were measured by drop calorimetry in the temperature range of 573–1,273 K and heat capacity, entropy and Gibbs energy functions were derived. The $ \Updelta_{\text{f}} H_{{298\;{\text{K}}}}^{^\circ } \;\left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} } \right) $ was found to be $ {{ - 2, 40 7. 8 \pm 2.0} \mathord{\left/ {\vphantom {{ - 2, 40 7. 8 \pm 2.0} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}}} \right. \kern-0em} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}} $ .  相似文献   

8.
The oxidation of a ternary complex of chromium(III), [CrIII(DPA)(Mal)(H2O)2]?, involving dipicolinic acid (DPA) as primary ligand and malonic acid (Mal) as co-ligand, was investigated in aqueous acidic medium. The periodate oxidation kinetics of [CrIII(DPA)(Mal)(H2O)2]? to give Cr(VI) under pseudo-first-order conditions were studied at various pH, ionic strength and temperature values. The kinetic equation was found to be as follows: \( {\text{Rate}} = {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} \mathord{\left/ {\vphantom {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}} \) where k 6 (3.65 × 10?3 s?1) represents the electron transfer reaction rate constant and K 4 (4.60 × 10?4 mol dm?3) represents the dissociation constant for the reaction \( \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } \rightleftharpoons \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)\left( {\text{OH}} \right)} \right]^{2 - } + {\text{H}}^{ + } \) and K 5 (1.87 mol?1 dm3) and K 6 (22.83 mol?1 dm3) represent the pre-equilibrium formation constants at 30 °C and I = 0.2 mol dm?3. Hexadecyltrimethylammonium bromide (CTAB) was found to enhance the reaction rate, whereas sodium dodecyl sulfate (SDS) had no effect. The thermodynamic activation parameters were estimated, and the oxidation is proposed to proceed via an inner-sphere mechanism involving the coordination of IO4 ? to Cr(III).  相似文献   

9.
The kinetics and mechanism of the reduction of enneamolybdonickelate(IV) by arsenite in aqueous acid solution was studied by spectrophotometry. The reaction rate increases with increasing concentrations of H+ and with temperature. The associated rate law is: . The rate constants and activation parameters of the rate-determining step were evaluated. A mechanism related to this reaction was proposed.  相似文献   

10.
The Gibbs free energies of formation of Eu3RuO7(s) and Eu2Ru2O7(s) have been determined using solid-state electrochemical technique employing oxide ion conducting electrolyte. The reversible electromotive force (e.m.f.) of the following solid-state electrochemical cells have been measured:
The Gibbs free energies of formation of Eu3RuO7(s) and Eu2Ru2O7(s) from elements in their standard state, calculated by the least squares regression analysis of the data obtained in the present study, can be given, respectively, by:
The uncertainty estimates for Δf G o(T) include the standard deviation in e.m.f. and uncertainty in the data taken from the literature.  相似文献   

11.
The electrochemical properties of boron-doped diamond (BDD) polycrystalline films grown on tungsten wire substrates using ethanol as a precursor are described. The results obtained show that the use of ethanol improves the electrochemistry properties of “as-grown” BDD, as it minimizes the graphitic phase upon the surface of BDD, during the growth process. The BDD electrodes were characterized by Raman spectroscopy, scanning electronic microscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The boron-doping levels of the films were estimated to be ∼1020 B/cm3. The electrochemical behavior was evaluated using the and redox couples and dopamine. Apparent heterogeneous electro-transfer rate constants were determined for these redox systems using the CV and EIS techniques. values in the range of 0.01–0.1 cm s−1 were observed for the and redox couples, while in the special case of dopamine, a lower value of 10−5 cm s−1 was found. The obtained results showed that the use of CH3CH2OH (ethanol) as a carbon source constitutes a promising alternative for manufacturing BDD electrodes for electroanalytical applications.  相似文献   

12.
A new d10 coordination polymer, \(\left\{ {\left( {{\text{C}}_{5} {\text{H}}_{14} {\text{N}}_{2} } \right)_{2} \left[ {{\text{Cd}}\left( {\left( {{\text{P}}_{6} {\text{O}}_{18} } \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right)} \right] \cdot 6{\text{H}}_{2} {\text{O}}} \right\}_{n}\), was prepared and characterized by X-ray diffraction, IR-Raman spectroscopy, thermal analysis and cyclic voltammetry. The crystal structure determination reveals that the phosphate anions alternate with the cadmium octahedral to form an anionic coordination polymer extending along [001] direction. The double protonated homopiperazine cations and the water molecules ensure the interconnection between polymers and thus giving rise to three dimensional supramolecular networks. By means of cyclic voltammetry, it is shown that whilst the reduction of the complexed Cd2+ occurs with a biggest difficulty than this of its free form, the anodic oxidation of the heterocyclic N donor piperazine became quite easy, when it is displayed as a counterpart diprotonated cation, between the anionic layers of \(\left[ {{\text{Cd}}({\text{P}}_{6} {\text{O}}_{18} )({\text{H}}_{2} {\text{O}})_{2} )} \right]_{\text{n}}^{{4{\text{n}} - }}\). The antibacterial activity of the coordination polymer is also discussed.  相似文献   

13.
Parameters of the solvation equilibria \({\left[ {Fe{{\left( {{H_2}O} \right)}_6}} \right]^{3 + }} + nDMSO \rightleftarrows {\left[ {Fe{{\left( {{H_2}O} \right)}_{6 - n}}{{\left( {DMSO} \right)}_n}} \right]^{3 + }} + n{H_2}O\) have been determined in aqueous-dimethyl sulfoxide solutions (0–90 vol% DMSO) by means of spectrophotometry and mathematical modeling of equilibria. Iron(III) is not involved in the complex formation with derivatives of sym-triazine: 2,4-diamino-6-(carbamoylmethylsulfinylmethyl)-1,3,5-triazine and 2,4-diamino-6-(acetohydrazidomethylsulfinylmethyl)-1,3,5-triazine in aqueous DMSO medium (40 vol % DMSO). Bis(hydrazinocarbonylmethyl) sulfoxide forms two complexes with iron(III), with 1: 1 and 1: 2 compositions; in contrast to the Cu(II) and Ni(II) complexes, in the iron complexes the ligand exists in the amide form. The most probable structures of the complexes have been revealed by molecular mechanics simulation and (in selected cases) using the DFT/B3LYP/6-31++G(d,p) density functional theory method.  相似文献   

14.
Multi walled carbon nanotubes (MWNT) in dimethylformamide (DMF) or aqueous sodium dodecyl sulfate (SDS) solution, colloidal gold nanoparticles (GNP) in phosphate buffer solution (PBS), and a GNP–MWNT mixture in aqueous SDS solution have been investigated for chemical modification of a screen-printed carbon electrode used as the signal transducer of a dsDNA-based biosensor. Differential pulse voltammetry of the DNA redox marker and the guanine moiety anodic oxidation and cyclic voltammetry with K3[Fe(CN)6] as indicator revealed substantial enhancement of the response of the biosensor, particularly when MWNT in SDS solution was used. The biosensor was used in testing of berberine, an isoquinoline plant alkaloid with significant antimicrobial and anticancer activity. Berberine had a very strong, concentration-dependent, effect on the structural stability of DNA from the human cancer cells (U937 cells) whereas non-cancer cells were changed only when berberine concentrations were relatively high 75 and 50 μg mL−1. Figure Schematic illustration of preparation of the nanostructured films: (a) layer-to-layer coverage (DNA/nanomaterial/SPE); (b) mixed coverage (DNA-nanomaterial/SPE)  相似文献   

15.
The standard molar Gibbs free energy of formation of ZnRh2O4(s) has been determined using an oxide solid-state electrochemical cell wherein calcia-stabilized zirconia (CSZ) was used as an electrolyte. The oxide cell can be represented by: . The electromotive force was measured in the temperature range from 943.9 to 1,114.2 K. The standard molar Gibbs energy of formation of ZnRh2O4(s) from elements in their standard state using the oxide electrochemical cell has been calculated and can be represented by: . Standard molar heat capacity C o p,m(T) of ZnRh2O4(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges, from 127 to 299 and 307 to 845 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: . The heat capacity of ZnRh2O4(s), was used along with the data obtained from the oxide electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   

16.
Measurements of oxygen permeation through dense composite membranes showed a considerable influence of processing conditions on the surface exchange kinetics, while the bulk ambipolar conductivity is almost unaffected by microstructural factors. Compared to the materials prepared via the glycine–nitrate process (GNP), the surface limitations to oxygen transport are significantly higher for dual-phase made of a commercial powder synthesized by spray pyrolysis. This difference in behavior may be related to compositional inhomogeneities in the grains of A-site deficient perovskite phase and an enhanced surface concentration of grain boundaries in the case of GNP-synthesized composite, which has also smaller grain size, slightly higher thermal expansion and lower total conductivity. No essential effects on Vickers hardness, varying in the range 6.3–6.5 GPa, were found. The deposition of porous catalyst layers onto the composite surface exposed to reducing environment leads to membrane decomposition. For the fabrication of tubular membranes, the cold isostatic pressing technique was, hence, combined with mechanical treatment to increase the specific surface area without incorporation of catalytically active components.  相似文献   

17.
Summary The oxidation of H2O2 by [W(CN)8]3– has been studied in aqueous media between pH 7.87 and 12.10 using both conventional and stopped-flow spectrophotometry. The reaction proceeds without generation of free radicals. The experimental overall rate law, , strongly suggests two types of mechanisms. The first pathway, characterized by the pH-dependent rate constant k s, given by , involves the formation of [W(CN)8· H2O2]3–, [W(CN)8· H2O2·W(CN)8]6– and [W(CN)8· HO]3– intermediates in rapid pre-equilibria steps, and is followed by a one-electron transfer step involving [W(CN)8·HO]3– (k a) and its conjugate base [W(CN)8·O]4– (k b). At 25 °C, I = 0.20 m (NaCl), the rate constant with H a =40±6kJmol–1 and S a =–151±22JK–1mol–1; the rate constant with H b =36±1kJmol–1 and S b =–136±2JK–1mol–1 at 25 °C, I = 0.20 m (NaCl); the acid dissociation constant of [W(CN)8·HO]3–, K 5 =(5.9±1.7)×10–10 m, with and is the first acid dissociation constant of H2O2. The second pathway, with rate constant, k f, involves the formation of [W(CN)8· HO2]4– and is followed by a formal two-electron redox process with [W(CN)8]3–. The pH-dependent rate constant, k f, is given by . The rate constant k 7 =23±6m –1 s –1 with and at 25°C, I = 0.20 m (NaCl).  相似文献   

18.
Oxidation of 3-(4-methoxyphenoxy)-1,2-propanediol (MPPD) by bis(hydrogenperiodato) argentate(III) complex anion, [Ag(HIO6)2]5− has been studied in aqueous alkaline medium by use of conventional spectrophotometry. The major oxidation product of MPPD has been identified as 3-(4-methoxyphenoxy)-2-ketone-1-propanol by mass spectrometry. The reaction shows overall second-order kinetics, being first-order in both [Ag(III)] and [MPPD]. The effects of [OH] and periodate concentration on the observed second-order rate constants k′ have been analyzed, and accordingly an empirical expression has been deduced:
where [IO4 ]tot denotes the total concentration of periodate and k a = (0.19 ± 0.04) M−1 s−1, k b = (10.5 ± 0.3) M−2 s−1, and K 1 = (5.0 ± 0.8) × 10−4 M at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k a and k b have been calculated. A mechanism is proposed, involving two pre-equilibria, leading to formation of a periodato–Ag(III)–MPPD complex. In the subsequent rate-determining steps, this complex undergoes inner-sphere electron-transfer from the coordinated MPPD molecule to the metal center by two paths: one path is independent of OH, while the other is facilitated by a hydroxide ion.  相似文献   

19.
The mechanism of the Co(II) catalytic electroreduction of water insoluble CoR2 salt in the presence of cysteine was developed. CoR2 = cobalt(II) cyclohexylbutyrate is the component of a carbon paste electrode. Electrode surface consecutive reactions are: (a) fast (equilibrium) reaction of the complex formation, (b) rate-determining reversible reaction of the promoting process of CoR(Ac+) complex formation, (c) rate-determining irreversible reaction of the electroactive complex formation with ligand-induced adsorption, and (d) fast irreversible reaction of the electroreduction. Reactions (a,b) connected with CoR2 dissolution and reactions (c,d) connected with CoR2 electroreduction are catalyzed by . Regeneration of (reactions “b,d”) and accumulation of atomic Co(0) (reaction “d”) take place. Experimental data [Sugawara et al., Bioelectrochem Bioenergetics 26:469, 1991]: i a vs E (i a is anodic peak, E is cathodic accumulation potential), i a vs , and i a vs pH have been quantitatively explained.  相似文献   

20.
Under considerations in the current study are reactions of the type \( {[{\text{Mn}}{\left( {\text{LOH}} \right)_{{2}}}]^{{{2} + }}} \to {\left[ {{\text{Mn}}\left( {\text{LO}} \right)} \right]^{ + }} + {\text{LO}}{{\text{H}}_{{2}}}^{ + } \), where the ligand LOH represents water or/and methanol. Preferential proton transfer reactions and loss of any ligand fragments are discussed in the light of ligand polarizability, dipole moment, dissociation energy, proton affinity, differences in ligand-ion ionization energy, and ion radii. The results indicate the proton affinity and dissociation energy of the O–H bond are more important for the overall proton transfer reaction than differences in the first ionization energy of the ligand and the second ionization energy of the metal ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号