首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The adsorption of tetraethylammonium (TEA+) ions on the (001) and planes of the bismuth single crystal from solutions in ethanol has been investigated by impedance measurement method. The experimental data were obtained in 0.02 M mixed-electrolyte solutions and the calculations performed with electrode potential as the independent electrical variable. The Gibbs energy of adsorption of TEA+ ions has been calculated using the simple virial adsorption isotherm, and it was found that the adsorption of TEA+ cations is weaker than the adsorption of halide anions. The electrosorption valency evaluated has a nearly constant value in the potential region studied. It was concluded that the formed effective surface dipole is significantly screened by the solvent molecules and the metal electron gas. The analysis of the impedance spectra was performed by fitting the experimental data to the various equivalent circuits. It was found that the behaviour of TEA+ ions at Bi(hkl)∣ethanol interface can be described with the equivalent circuit, corresponding to the classical Frumkin–Melik-Gaikazyan model. The results obtained indicate that only weak interaction between TEA+ ions and bismuth surface takes place, and there is no remarkable partial charge transfer from the adsorbed ions to the Bi surface atoms.  相似文献   

2.
The behavior of dense ceramic anodes made of perovskite-type (x = 0.30–0.70; y = 0–0.05; z = 0–0.20) and K2NiF4-type (Me = Co, Cu; x = 0–0.20) indicates significant influence of metal hydroxide formation at the electrode surface on the oxygen evolution reaction (OER) kinetics in alkaline solutions. The overpotential of cobaltite electrodes was found to decrease with time, while cyclic voltammetry shows the appearance of redox peaks characteristic of Co(OH)2/CoOOH. This is accompanied with increasing effective capacitance estimated from the impedance spectroscopy data, because of roughening of the ceramic surface. The steady-state polarization curves of in the OER range, including the Tafel slope, are very similar to those of model Co(OH)2–La(OH)3 composite films where the introduction of lanthanum hydroxide leads to decreasing electrochemical activity. La2NiO4-based anodes exhibit a low electrochemical performance and poor stability. The effects of oxygen nonstoichiometry of the perovskite-related phases are rather negligible at high overpotentials but become significant when the polarization decreases, a result of increasing role of oxygen intercalation processes. The maximum electrocatalytic activity to OER was observed for A-site-deficient , where the lanthanum content is relatively low and the Co4+ concentration determined by thermogravimetric analysis is highest compared to other cobaltites. Applying microporous layers made of template-synthesized nanocrystalline leads to an improved anode performance, although the effects of microstructure and thickness are modest, suggesting a narrow electrochemical reaction zone. Further enhancement of the OER kinetics can be achieved by electrodeposition of cobalt hydroxide- and nickel hydroxide-based films. Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.  相似文献   

3.
4.
A number of thermodynamic parameters viz. apparent molar volumes, ϕ v , partial molar volumes, , transfer volumes, , Falkenhagen coefficients, A, Jones–Dole coefficients, B, free energies per mole of solute, , and per mole of solvent, , molar refraction, R D , and limiting molar conductivity, , have been calculated by using the experimentally measured densities, ρ, viscosities, η, refractive indices, n D , and specific conductivities, κ, data of glycine (0.02–0.10 m) in 0.01 m aqueous sodium dodecyl sulphate, cetyltrimethylammonium bromide, and triton X-100 (TX-100) solutions at 298.15, 303.15, 308.15, and 313.15 K. The above calculated parameters were found to be sensitive towards the interactions prevailing in the studied amino acid–surfactant–water systems. Moreover, fluorescence study using pyrene as a photophysical probe has also been carried out, the results of which support the conclusions obtained from other techniques.  相似文献   

5.
Electrochemical impedance spectroscopy has been applied for investigation of the hydrogen evolution kinetics at the electrochemically polished Bi(001) plane, and the complicated reaction mechanism (slow adsorption and charge-transfer steps) has been established. The charge-transfer resistance and adsorption capacitance values depend noticeably on the electrode potential applied. The adsorption resistance is maximal in the region of electrode potential E min = −0.65 V vs. (Hg|Hg2Cl2|4 M KCl), where the minimal values of constant phase element (CPE) coefficient Q have been calculated. The fractional exponent α CPE values of the CPE close to unity (α CPE ≥ 0.94 and weakly dependent on the electrode potential and pH of solution () have been obtained, indicating the weak deviation of Bi(001)|HClO4 + H2O interface from the ideally flat capacitive electrode. Q differs only very slightly from double-layer capacitance C dl values in the whole region of potentials and , investigated.  相似文献   

6.
The power–time curves of micellar formation of two anionic surfactants, sodium laurate (SLA) and sodium dodecyl sulfate (SDS), in N,N-dimethyl acetamide (DMA) in the presence of various long-chain alcohols (1-heptanol, 1-octanol, 1-nonanol and 1-decanol) were measured by titration microcalorimetry at 298 K. The critical micelle concentrations (CMCs) of SLA and SDS under various conditions at 298 K were obtained based on the power–time curves. Thermodynamic parameters (, and ) for micellar systems at 298 K were evaluated according to the power–time curves and the mass action model. The influences of the number of carbon-atom and the concentration of alcohol were investigated. Moreover, combined the thermodynamic parameters at 303, 308 and 313 K in our previous work and those of 298 K in the present work for SLA and SDS in DMA in the presence of long-chain alcohols, an enthalpy–entropy compensation effect was observed. The values of the enthalpy of micellization calculated by direct and indirect methods were made a comparison.  相似文献   

7.
Comparative study of capacitative properties of RuO2/0.5 M H2SO4 and Ru/0.5 M H2SO4 interfaces has been performed with a view to find out the nature of electrochemical processes involved in the charge storage mechanism of ruthenium (IV) oxide. The methods of cyclic voltammetry and scanning electron microscopy (SEM) were employed for the investigation of electrochemical behavior and surface morphology of RuO2 electrodes. It has been suggested that supercapacitor behavior of RuO2 phase in the potential E range between 0.4 and 1.4 V vs reference hydrogen electrode (RHE) should be attributed to double-layer-type capacitance, related to non-faradaic highly reversible process of ionic pair formation and annihilation at RuO2/electrolyte interface as described by following summary equation:
where and represent holes and electrons in valence and conduction bands, respectively. The pseudocapacitance of interface under investigation is related to partial reduction of RuO2 layer at E < 0.2 V and its subsequent recovery during the anodic process.  相似文献   

8.
Carboxymethyl cellulose (CMC, DS 0.58) was treated in solutions of sodium hydroxide (0.001–1 M) at 95 °C. The treated (1–12 h) CMC samples were purified by dialysis and analyzed by UV spectroscopy and by UV resonance Raman spectroscopy (UVRRS) with excitation at 244 nm. A UV absorption maximum at 265 nm and a UVRR signal at 1650 cm−1 were indicative of formation of -conjugated aldehyde end groups in CMC through -elimination. Another strong UVRR band at 1610 cm−1 gave evidence on conversion of some of the -conjugated aldehyde end groups to alkali stable aromatic structures.  相似文献   

9.
The aggregation behavior and thermodynamic properties of micellization for the ionic liquid-type gemini imidazolium surfactants with different spacer length ([C12s–C12im]Br2, s = 2, 4, 6) have been investigated by means of surface tension, electrical conductivity, dynamic light scattering and fluorescence measurements. The values of cmc, γ cmc, Γ max, A min, π cmc, pc20 and cmc/pc20 suggest that the shorter the spacer, the higher the surface activity of [C12s–C12im]Br2 is. The cmc and γ cmc values are decreased significantly in the presence of sodium halides, and the values decrease in the order NaCl < NaBr < NaI. The thermodynamic parameters of micellization (, , ) indicate that the micellization of [C12–2–C12im]Br2 and [C12–4–C12im]Br2 is entropy-driven, whereas aggregation of [C12–6–C12im]Br2 is enthalpy-driven at lower temperature but entropy-driven at higher temperature. Finally, the fluorescence measurements show that the micropolarity of micelles increases but the aggregation numbers decrease with increasing the spacer length of [C12s–C12im]Br2.  相似文献   

10.
The electrochemical properties of boron-doped diamond (BDD) polycrystalline films grown on tungsten wire substrates using ethanol as a precursor are described. The results obtained show that the use of ethanol improves the electrochemistry properties of “as-grown” BDD, as it minimizes the graphitic phase upon the surface of BDD, during the growth process. The BDD electrodes were characterized by Raman spectroscopy, scanning electronic microscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The boron-doping levels of the films were estimated to be ∼1020 B/cm3. The electrochemical behavior was evaluated using the and redox couples and dopamine. Apparent heterogeneous electro-transfer rate constants were determined for these redox systems using the CV and EIS techniques. values in the range of 0.01–0.1 cm s−1 were observed for the and redox couples, while in the special case of dopamine, a lower value of 10−5 cm s−1 was found. The obtained results showed that the use of CH3CH2OH (ethanol) as a carbon source constitutes a promising alternative for manufacturing BDD electrodes for electroanalytical applications.  相似文献   

11.
Within the Hartree-Fock framework, the spinless two-electron density function Γ (r 1, r 2) consists of direct Γdi (r 1, r 2) and exchange Γex (r 1, r 2) parts. Accordingly, the inner and outer radii in many-electron systems are rigorously separated into the direct and exchange contributions, i.e., and . It is generally shown that and , where is the usual average radius of an electron. Numerical examinations of the direct and exchange contributions for the 102 atoms from He to Lr in their ground states find that the electron exchange works to decrease and increase . However, the exchange parts are very small and the direct parts essentially govern the inner and outer radii.  相似文献   

12.
New far-visible absorbing anilino-cyanine dyes have been synthesised for future application as chromoionophores in integrated waveguide absorbance optodes based on bulk optodes. The effect of the heterocycle, of the substitution of the heterocyclic nitrogen and of the type of heptamethine central ring on the pK a values (4.3–8.2 in ethanol–water solutions and 9.5–11.0 in plasticised PVC membranes), on the spectroscopic characteristics of the dye and on photostability is discussed. pH-selective bulk optodes have been formulated as a first approach to develop ion-selective optodes, and sensitivity, repeatability, lifetime and response time have been determined. The dyes show good analytical behaviour for use as chromoionophores for the development of ion-selective optodes. Reversible (80–87%), fast (tr90% = 0.94–2.28 min) and pH-sensitive membranes (slopes of 0.09–0.23 ΔAbs·pHdec–1, absorbance range 0.19–0.53) have been obtained. Moreover, they exhibit good spectroscopic features for employment with integrated optochemical sensors: absorption maxima of the acidic species in plasticised PVC membranes matched those of 650–670-nm LEDs, high molar absorption coefficients ( L mol–1 cm–1 and L mol−1 cm−1) and fluorescence. Absorption spectra of the acidic and basic structures of one of the synthesised chromoionophores at different pKa values. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
Structural and thermal properties of the 20Li2O-80TeO2 glass were studied using X-ray diffraction analysis and differential scanning calorimetry techniques to understand and control the crystallization process on this glass. The γ-TeO2, α-TeO2 and α-Li2Te2O5 phases were identified during the crystallization in this glass. Activation energies and Avrami exponent n were calculated from non-isothermal measurements for glasses with different particle size. The mean values of Avrami exponent were obtained for glasses with 63–75 and 45–63 μm particle sizes such as , but glasses with particle size 38–45 μm and smaller than 38 g,m presented .  相似文献   

14.
Let λ1 (G) and Δ (G), respectively, denote the largest eigenvalue and the maximum degree of a graph G. Let be the set of trees with perfect matchings on 2m vertices, and . Among the trees in , we characterize the tree which alone minimizes the largest eigenvalue, as well as the tree which alone maximizes the largest eigenvalue when . Furthermore, it is proved that, for two trees T 1 and T 2 in (m≥ 4), if and Δ (T 1) > Δ (T 2), then λ1 (T 1) > λ1 (T 2).  相似文献   

15.
The mechanism of the Co(II) catalytic electroreduction of water insoluble CoR2 salt in the presence of cysteine was developed. CoR2 = cobalt(II) cyclohexylbutyrate is the component of a carbon paste electrode. Electrode surface consecutive reactions are: (a) fast (equilibrium) reaction of the complex formation, (b) rate-determining reversible reaction of the promoting process of CoR(Ac+) complex formation, (c) rate-determining irreversible reaction of the electroactive complex formation with ligand-induced adsorption, and (d) fast irreversible reaction of the electroreduction. Reactions (a,b) connected with CoR2 dissolution and reactions (c,d) connected with CoR2 electroreduction are catalyzed by . Regeneration of (reactions “b,d”) and accumulation of atomic Co(0) (reaction “d”) take place. Experimental data [Sugawara et al., Bioelectrochem Bioenergetics 26:469, 1991]: i a vs E (i a is anodic peak, E is cathodic accumulation potential), i a vs , and i a vs pH have been quantitatively explained.  相似文献   

16.
The processes of nickel surface anodic oxidation taking place within the range of potentials preceding oxygen evolution reaction (OER) in the solutions of 1 M KOH, 0.5 M K2SO4, and 0.5 M H2SO4 have been analyzed in the present paper. Metallic nickel, thermally oxidized nickel, and black nickel coating were used as Ni electrodes. The methods of cyclic voltammetry and X-ray photoelectron spectroscopy were employed. The study was undertaken with a view to find the evidence of peroxide-type nickel surface compounds formation in the course of OER on the Ni electrode surface. On the basis of experimental results and literature data, it has been suggested that in alkaline solution at E ≈ 1.5 V (RHE) reversible electrochemical formation of Ni(IV) peroxide takes place according to the reaction as follows: This reaction accounts for both the underpotential (with respect to ) formation of O2 from NiOO2 peroxide and also small experimental values of dE/dlgi slope (<60 mV) at low anodic current densities, which are characteristic for the two-electron transfer process. It has been inferred that the composition of the γ-NiOOH phase, indicated in the Bode and revised Pourbaix diagrams, should be ∼5/6 NiOOH + ∼1/6 NiOO2. The schemes demonstrating potential-dependent transitions between Ni surface oxygen compounds are presented, and the electrocatalytic mechanisms of OER in alkaline, acid, and neutral medium have been proposed.  相似文献   

17.
Two new compounds Pd2Os3(CO)12 , 13 and Pd3Os3(CO)12 , 14 have been obtained from the reaction of with Os3(CO)12 at room temperature. The products were formed by the addition of two and three groups to the Os–Os bonds of Os3(CO)12. Compounds 13 and 14 interconvert between themselves by intermolecular exchange of the groups in solution. Compounds 13 and 14 have been characterized by single crystal X-ray diffraction analyses.Dedicated to Professor Brian F. G. Johnson on the occasion of his retirement – 2005.  相似文献   

18.
The kinetics of hexacyanoferrate(III) reduction by hydrogen peroxide in strongly alkaline media leading to hexacyanoferrate(II) ion have been studied spectrophotometrically within the wavelength range 300–500 nm. The reaction obeys a simple pseudo-first-order rate expression under the applied conditions, namely, a large excess of the reductant and OH anion concentrations, and a low oxidant concentration. The linear dependences of the pseudo-first-order rate constant on OH and H2O2 concentrations are consistent with the rate law of the form: where and are the second- and the pseudo-third-order rate constants for the electron transfer from HO2 and O2 2− to [Fe(CN)6]3−, respectively. The apparent activation parameters determined at 0.4 M NaOH are as follows: ΔH # = (18.0 ± 1.0) kJ mol−1 and ΔS # = (−155 ± 3.5) J K−1 mol−1. The possible mechanism of the reaction is discussed.  相似文献   

19.
Direct synthesis of H2O2 solutions by a fuel cell method was reviewed. The fuel cell reactor of [O2, gas-diffusion cathode electrolyte solutions Nafion membrane electrolyte solutions gas-diffusion anode, H2] is very effective for formation of H2O2. The three-phase boundary (O2(g)–electrode(s)–electrolyte(l)) in the gas-diffusion cathode is essential for efficient formation of H2O2. Fast diffusion processes of O2 to the active surface and of H2O2 to the bulk electrolyte solutions are essential for H2O2 accumulation. The maxima H2O2 concentrations of 1.2 M (3.5 wt%) and 2.4 M (7.0 wt%) were accomplished by the heat-treated Mn-OEP/AC electrocatalyst with H2SO4 electrolyte and by the VGCF electrocatalyst with NaOH electrolyte, respectively, under short circuit conditions.  相似文献   

20.
A u.v.–vis spectrophotometric study of the adduct formation of the nickel(II) Schiff base complexes,([NiL]) where L = [3-methoxysalophen, N,N′-bis(3-methoxysalicylidene)-1,2-phenylenediimine] (1), [4-methoxysalophen, N,N′-bis(4-methoxysalicylidene)-1,2-phenylenediimine] (2), [5-methoxysalophen, N,N′-bis(5-methoxysalicylidene)-1,2-phenylenediimine] (3) and [Salophen, [N,N′-bis(salicylaldehydo)-1,2-phenylenediimine] (4) as donors with R2SnCl2 (R = methyl, phenyl and n-butyl) as acceptors have been investigated in chloroform, as solvent. Adducts have been characterized by 1H, 13C and 119Sn NMR, IR and electronic spectroscopy and CHN elemental microanalysis. The formation constants and the thermodynamic free energies were measured using u.v.–vis spectrophotometry titration for 1:1 adduct formation at various temperatures (T = 278 to 308 K). The trend of the adduct formation of the nickel Schiff base complexes with a given tin acceptor decreases as follows:
and
The trend of the reaction of R2SnCl2 acceptors toward a given nickel Schiff base complex is as follows:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号