首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
2.
Solar elastosis is observed in the dermis of photoaged skin and is characterized by an accumulation of abnormal elastin in the extracellular space. Several proteases that degrade elastin in the extracellular space have been implicated in its formation. The lysosomal protease cathepsin K (catK) has recently been described to be highly expressed in skin fibroblasts under certain pathologic conditions. As cat K is one of the most potent mammalian elastases, we hypothesized that catK-mediated intracellular elastin degradation may play a role in the formation of solar elastosis. Immunostaining of cultured skin fibroblasts incubated with labeled elastin demonstrated internalization of extracellular elastin to lysosomes and its degradation by catK. Induction of catK expression in fibroblasts was observed both in vitro and in vivo after exposure to longwave UVA. In contrast to fibroblasts from young donors, cells from old donors failed to activate catK in response to UVA. These data suggest a role of intracellular elastin degradation by catK in the formation of solar elastosis. We propose that an age-related decline in catK activity, in particular after UV exposure, may promote the formation of actinic elastosis through a decline of orderly intracellular elastin degradation and subsequent accumulation of elastin in the extracellular space.  相似文献   

3.
Abstract— Activation of expression of the heme oxygenase (HO) gene appears to be involved in a cellular defense system in mammalian cells. We now demonstrate that while HO-1 mRNA levels are strongly inducible in dermal fibroblasts they are barely inducible in human epidermal keratinocytes following oxidative stress (UVA radiation and hydrogen peroxide). Paralleling this result was the observation that HO-2 mRNA levels were low in dermal fibroblasts but were high in epidermal keratinocytes. In neither case was the HO-2 gene inducible. The expression of the two HO genes led to enzymatic activity in both types of skin cells with an approximately 2.5-fold higher level of enzymatic activity present in keratinocytes compared with fibroblasts derived from the same biopsy. In addition, ferritin levels, which have been found to be augmented via the HO-dependent release of iron from endogenous heme sources, were two- to three-fold higher in keratinocytes compared with matching fibroblasts. This higher ferritin pool would result in an enhancement of cellular iron sequestering capacity that may confer increased resistance to oxidative stress. Indeed, keratinocytes showed less UVA radiation-dependent cell membrane damage than fibroblasts. These results are consistent with the hypothesis that HO expression in human epidermis and dermis is related to cellular defense mechanisms that operate in human skin.  相似文献   

4.
5.
6.
Chronic UVA exposure results in elevated reactive oxygen species in skin which leads to photoaging characterized as upregulated matrix metalloproteinase (MMP)-1 and loss of collagen. Therefore, natural antioxidants are hailed as promising agents to be utilized against photoaging. In the current study, reynosin and santamarine, two known sesquiterpene lactones isolated from Artemisia scoparia, were analyzed for their anti-photoaging properties in UVA-irradiated human dermal fibroblasts (HDFs). Results showed that UVA irradiation (8 J/cm2) upregulated the MMP-1 secretion and expression, and suppressed collagen production, which were significantly reverted by santamarine treatment (10 µM). Although both reynosin and santamarine exhibited ROS scavenging abilities, reynosin failed to significantly diminish UVA-stimulated MMP-1 release. UVA-irradiated HDFs showed increased collagen production when treated with santamarine. As a mechanism to suppress MMP-1, santamarine significantly suppressed the UVA-induced phosphorylation of p38 and JNK and nuclear translocation of p-c-Fos and p-c-Jun. Santamarine promoted collagen I production via relieving the UVA-induced suppression on TGF-β and its downstream activator Smad2/3 complex. Antioxidant properties of santamarine were also shown to arise from stimulating Nrf2-dependent expression of antioxidant enzymes SOD-1 and HO-1 in UVA-irradiated HDFs. In conclusion, santamarine was found to be a promising natural antioxidant with anti-photoaging properties against UVA-induced damages in HDFs.  相似文献   

7.
UVA radiation penetrates deeply into the skin reaching both the epidermis and the dermis. We thus investigated the effects of naturally occurring doses of UVA radiation on mitogen-activated protein kinase (MAPK) activities in human dermal fibroblasts. We demonstrated that UVA selectively activates p38 MAPK with no effect on extracellular-regulated kinases (ERK1-ERK2) or JNK-SAPK (cJun NH2-terminal kinase-stress-activated protein kinase) activities. We then investigated the signaling pathway used by UVA to activate p38 MAPK. L-Histidine and sodium azide had an inhibitory effect on UVA activation of p38 MAPK, pointing to a role of singlet oxygen in transduction of the UVA effect. Afterward, using prolonged cell treatments with growth factors to desensitize their signaling pathways or suramin to block growth factor receptors, we demonstrated that UVA signaling pathways shared elements with growth factor signaling pathways. In addition, using emetine (a translation inhibitor altering ribosome functioning) we detected the involvement of ribotoxic stress in p38 MAPK activation by UVA. Our observations suggest that p38 activation by UVA in dermal fibroblasts involves singlet oxygen-dependent activation of ligand-receptor signaling pathways or ribotoxic stress mechanism (or both). Despite the activation of these two distinct signaling mechanisms, the selective activation of p38 MAPK suggests a critical role of this kinase in the effects of UVA radiation.  相似文献   

8.
UVA radiation (315-400 nm), which constitutes ca 95% of the UV irradiation in natural sunlight reaching earth surface, is a major environmental risk factor associated with human skin cancer pathogenesis. UVA is an oxidizing agent that causes significant damage to cellular components through the release of reactive oxygen species (ROS) and leads to photoaging and photocarcinogenesis. Here we investigate the effect of silibinin, the flavonolignan from Silybum marianum, on UVA-induced ROS and cell death in human keratinocyte cell line HaCaT. In addition, the effect of silibinin on UVA-induced intracellular ROS-mediated endoplasmic reticulum (ER) stress was also analyzed. UVA irradiation resulted in ROS production and apoptosis in HaCaT cells in a dose-dependent manner, and the ROS levels and apoptotic index were found to be elevated significantly when the cells were treated with 75 μmsilibinin for 2 h before UVA exposure. When the cells were pretreated with 10 mmN-acetyl cysteine, the enhancement of UVA-induced apoptosis by silibinin was compromised. Furthermore, we found that silibinin enhances ER stress-mediated apoptosis in HaCaT cells by increasing the expression of CHOP protein. These results suggest that silibinin may be beneficial in the removal of UVA-damaged cells and the prevention of skin cancer.  相似文献   

9.
Abstract Skin tumor promotion by phorbol ester is believed to be mediated by the phospholipid-dependent ser/ thr kinase, protein kinase C (PKC). Long-wave ultraviolet radiation (320-400 nm, UVA), which has also been shown to promote skin tumors, induces elevated levels of PKC in murine fibroblasts, suggesting that UVA may promote the development of basal and squamous cell skin cancers by a mechanism involving PKC. To examine UVA effects on PKC in a model relevant to skin, we maintained normal human epidermal keratinocytes (NHEK) in serum-free medium and exposed the cultured cells to various doses of UVA or to the phorbol ester, 12- O -tetradecanoylphorbol-13-acetate (TPA). Fifty minutes after exposure to UVA (5-20 J/cm2), PKC activity was elevated up to three-fold in NHEK cytosolic fractions, and membrane-associated PKC activity was elevated up to two-fold by UVA. The TPA treatment induced a 10-fold increase in membrane-associate PKC activity only. Immunoblot analysis suggested that a UVA-induced increase in PKC protein occurred. Both UVA and TPA reduced the cell number by 50-75% in the first 24-48 h; however, irradiated cultures began to recover at 72 h post-UVA due to an increased proliferative rate beginning after 48 h. Treatment with TPA induced a high level of differentiation as measured by cornified envelope formation. Ultraviolet A irradiation exposure was not followed by increased differentiation. These findings suggest that acute UVA exposure elevates PKC activity in human keratinocytes and may act through PKC to promote actinic skin cancer. The molecular mechanism is like to differ from that of the phorbol esters, however.  相似文献   

10.
The aim of this study was to verify the effects of probiotic Lactobacillus rhamnosus on zebrafish oocyte maturation using FPA (focal plane array) FTIR imaging together with specific biochemical assays (SDS-PAGE, real-time PCR and enzymatic assay). Oocyte growth is prevalently due to a vitellogenic process which consists of the hepatic synthesis of vitellogenin and its selective uptake during maturation. The administration of L. rhamnosus IMC 501 for 10 days induced chemical changes to oocyte composition, promoting the maturation process. Some interesting biochemical features, linked to protein secondary structure (amide I band) and to phospholipidic and glucidic patterns, were detailed by vibrational analysis. The spectroscopic results were supported by the early increase of the lysosomal enzyme involved in the final oocyte maturation, the cathepsin L. This enzyme increases during follicle maturation, with the highest levels in class IV oocytes. In treated females, class III oocytes showed higher cathepsin L gene expression and enzymatic activity, with levels comparable to class IV oocytes isolated from controls; this can be related to the proteolytic cleavage of the higher molecular mass yolk protein components, as evidenced by SDS-PAGE.  相似文献   

11.
Endogenous cellular chromophores absorb ultraviolet A radiation (UVA, 290-320 nm), the major UV component of terrestrial solar radiation, leading to the formation of reactive oxidizing species that initiate apoptosis, gene expression and mutagenesis. UVA-induced apoptosis of T helper cells is believed to underlie the UVA phototherapy for atopic dermatitis and other T cell-mediated inflammatory skin diseases. We have evaluated the involvement of the Fas-Fas ligand (FasL) pathway in rapid UVA-induced apoptosis in human leukemia HL-60 cells. UVA-induced apoptosis was not inhibited by pretreatment with a neutralizing anti-Fas antibody, although the same UVA treatment initiated cleavage of caspase-8 and subsequent processing of Bid and caspase-3-like proteases. Inhibition of caspase-8 by Lle-Glu (OMe)-Thr-Asp(OMe)-fluoromethyl ketone completely blocked caspase-3 cleavage and apoptosis in UVA-treated cells, suggesting that apoptosis was initiated by the Fas pathway. This inference was supported by demonstrating that immunoprecipitates obtained from UVA-treated cells using anti-Fas antibody contained caspase-8 and Fas-associating protein with death domain (FADD). In addition, Fas clustering in response to UVA treatment was observed by immunofluorescence microscopy. These data support a mechanism for rapid, UVA-induced apoptosis in HL-60 cells involving initial formation of the Fas-FADD-caspase-8 death complex in an FasL-independent manner.  相似文献   

12.
Abstract— Since Hayflick's pioneering work in the early sixties, human diploid fibroblasts have become a widely accepted in vitro model system. Recently, Bayreuther and co-workers extended this experimental approach showing that fibroblasts in culture resemble, in their design, the hemopoietic stem-cell differentiation system. They found that the chemical agent mitomycin C accelerates the differentiation pathway from mitotic to postmitotic fibroblasts. We measured the response of endogenous glutathione levels after UVA irradiation (320-400 nm) in mitotic and mitomycin C-induced postmitotic human skin fibroblasts and foreskin-derived keratinocytes. The initial levels in mitotic foreskin derived human fibroblasts were 14.4 nmol glutathione per mg protein, whereas a 30% higher value was obtained in matching foreskin-derived keratinocytes. Similiar elevated levels of this important intracellular free radical scavenging system were found in fibroblasts of a donor suffering from xeroderma pigmentosum. Furthermore, three to four times higher levels of glutathione in mitomycin C-treated mitotic fibroblasts have been determined. In mitotic skin fibroblasts, UVA irradiation resulted in a depletion of glutathione up to 90% following a fluence of 1.0 MJ/m2UVA radiation. Higher initial glutathione levels were found in keratinocytes and mitomycin C-treated skin fibroblasts. In these fibroblasts a 70% depletion was detected and a much lower depletion (10-20%) was seen in some keratinocyte cell lines following fluences up to 1.0 MJ/m2. The depletion in skin fibroblasts was retained after 24 h following a fluence of 0.75 MJ/m2UVA light. In view of the fact that glutathione has been shown to be involved in a variety of metabolic processes and plays a role in cellular protection against UVA radiation, our results imply that the fibroblast differentiation system is a very useful tool to unravel the complex mechanism of UVA-induced oxidative stress.  相似文献   

13.
Exposure of mammalian cells to oxidative stress alters lysosomal enzymes. Through cytochemical analysis of lysosomes with LysoTracker, we demonstrated that the number and fluorescent intensity of lysosome-like organelles in HeLa cells increased with exposure to hydrogen peroxide (H2O2), 6-hydroxydopamine (6-OHDA), and UVB irradiation. The lysosomes isolated from HeLa cells exposed to three oxidative stressors showed the enhanced antimicrobial activity against Escherichia coli. Further, when lysosomes that were isolated from HeLa cells exposed by oxidative stress were treated to normal HeLa cells, the viability of the HeLa cells was drastically reduced, suggesting increased in vitro lysosomal function (i.e., antimicrobial activity, apoptotic cell death). In addition, we also found that cathepsin B and D were implicated in increased in vitro lysosomal function when isolated from HeLa cells exposed by oxidative stress. Decrease in cathepsin B activity and increase in cathepsin D activity were observed in lysosomes isolated from HeLa cells after treatment with H2O2, 6-ODHA, or UVB, but cathepsin B and D were not the sole factors to induce cell death by in vitro lysosomal function. Therefore, these studies suggest a new approach to use lysosomes as antimicrobial agents and as new materials for treating cancer cell lines.  相似文献   

14.
Sublethal effects of ultraviolet A radiation on Enterobacter cloacae   总被引:1,自引:0,他引:1  
We report the sublethal effects of ultraviolet A (UVA) on Enterobacter cloacae in comparison with those produced in Escherichia coli. UVA-induced sublethal effects were investigated in either bacterial membrane and at tRNA level. Limited dependence on oxygen concentration for photoinduced inhibition of biochemical membrane functions and low levels of oxidative damage during the irradiation period were found in En. cloacae. On the other hand, ultraviolet spectroscopy and reversed-phase HPLC analysis of hydrolysed tRNA showed that radio induced damage to tRNA is similar in En. cloacae and E. coli. Nevertheless, growth delay induced by UVA in En. cloacae was shorter than that found in E. coli submitted to the same experimental conditions. A limited post-irradiation ppGpp accumulation and the absence of any influence of the membrane damage on the growth delay extent seem to be responsible for the shortness of this effect in En. cloacae. Most of the differences between En. cloacae and E. coli could be attributed to an increased ability of En. cloacae to overcome oxidative stress during UVA exposure.  相似文献   

15.
Albino hairless mice (Skh:HR-l) exposed to sub-erythemal doses of UVB or UVA radiation display physical, visible, and histological alterations. Skin surface replicas, transepidermal water loss, and skin fold thickness were found to change with irradiation. Visibly, the skin wrinkled with UVB and sagged with UVA exposure. These changes were graded on 3-point scales. Histological alterations included tissue thickening, loss of elastic fibers, elastosis, loss of collagen, and increases in muco-substances. The UVB alterations occur to a much lesser extent with an SPF-15 (7% PABA and 3% oxybenzone) sunscreen product. This sunscreen product had little effect on development of UVA-induced changes. However, an efficient UVA sunscreen (Parsol 1789) did reduce the UVA-induced changes. Many of the UVB-induced alterations regressed after UVB irradiation was stopped. No regression in UVA-induced alterations was observed when UVA irradiation was stopped. Qualitatively, the effects with UVA irradiation were like those observed in mouse chronological aging. These models and the convenient physical and visible grading methods described can be used to determine the effectiveness of topical treatments, such as sunscreens.  相似文献   

16.
Irradiation of cultured human skin fibroblasts with ultraviolet light from 320 to 400 nm (UVA) leads to a decrease in the membrane fluidity exemplified by an enhanced fluorescence anisotropy of the lipophilic fluorescent probe 1-[4-trimethylamino)-phenyl]-6-phenylhexa-1,3,5-triene. This UVA-induced decrease in fluidity is associated with lactate dehydrogenase leakage in the supernatant. Vitamin E, an inhibitor of lipid peroxidation, exerts a protective effect on both phenomena. Therefore, this UVA-induced damage in membrane properties may be related to lipid peroxidation processes. Moreover, exponentially growing cells are more sensitive to these UVA-induced alterations than confluent cells.  相似文献   

17.
The contribution of DNA strand breaks accumulating in the course of nucleotide excision repair to upregulation of the p53 tumor suppressor protein was investigated in human dermal fibroblast strains after treatment with 254 nm ultraviolet (UV) light. For this purpose, fibroblast cultures were exposed to UV and incubated for 3 h in the presence or absence of l-beta-D-arabinofuranosylcytosine (araC) and/or hydroxyurea (HU), and then assayed for DNA strand breakage and p53 protein levels. As expected from previous studies, incubation of normal and ataxia telangiectasia (AT) fibroblasts with araC and HU after UV irradiation resulted in an accumulation of DNA strand breaks. Such araC/HU-accumulated strand breaks (reflecting nonligated repair-incision events) following UV irradiation were not detected in xeroderma pigmentosum (XP) fibroblast strains belonging to complementation groups A and G. Western blot analysis revealed that normal fibroblasts exhibited little upregulation of p53 (approximately 1.2-fold) when incubated without araC after 5 J/m2 irradiation, but showed significant (three-fold) upregulation of p53 when incubated with araC after irradiation. AraC is known to inhibit nucleotide excision repair at both the damage removal and repair resynthesis steps. Therefore, the potentiation of UV-induced upregulation of p53 evoked by araC in normal cells may be a consequence of either persistent bulky DNA lesions or persistent incision-associated DNA strand breaks. To distinguish between these two possibilities, we determined p53 induction in AT fibroblasts (which do not upregulate p53 in response to DNA strand breakage) and in XP fibroblasts (which do not exhibit incision-associated breaks after UV irradiation). The p53 response after treatment with 5 J/m2 UV and incubation with araC was similar in AT, XPA, XPG and normal fibroblasts. In addition, exposure of XPA and XPG fibroblasts to UV (5, 10 or 20 J/m2) followed by incubation without araC resulted in a strong upregulation of p53. We further demonstrated that HU, an inhibitor of replicative DNA synthesis (but not of nucleotide excision repair), had no significant impact on p53 protein levels in UV irradiated and unirradiated human fibroblasts. We conclude that upregulation of p53 at early times after exposure of diploid human fibroblasts to UV light is triggered by persistent bulky DNA lesions, and that incision-associated DNA strand breaks accumulating in the course of nucleotide excision repair and breaks arising as a result of inhibition of DNA replication contribute little (if anything) to upregulation of p53.  相似文献   

18.
Abstract— It has previously been demonstrated that chronic low-dose solar-simulated UV radiation could induce both local and systemic immunosuppression as well as tolerance to a topically applied hapten. In this study, we have used a chronic low-dose UV-irradiation protocol to investigate the effects of UVA on the skin immune system of C3H/HeJ mice. Irradiation with UVA+B significantly suppressed the local and systemic primary contact hypersensitivity (CHS) response to the hapten 2,4,6-trinitrochlo-robenzene. Furthermore UVA+B reduced Langerhans cell (LC) and dendritic epidermal T cell (DETC) densities in chronically UV-irradiated mice. Ultraviolet A irradiation induced local, but not systemic, immunosuppression and reduced LC (32%) but not DETC from the epidermis compared to the shaved control animals. Treatment of mice with both UVA+B and UVA radiation also induced an impaired secondary CHS response, and this tolerance was transferable with spleen cells. These results suggest that depletion of LC, but not DETC, may be involved in UVA-induced local immunosuppression in our model, and that tolerance was induced in the presence of normal numbers of DETC. Hence exposure of C3H/HeJ mice 5 days per week for 4 weeks with UVA can induce local immunosuppression and tolerance.  相似文献   

19.
Exposing experimental animals or human volunteers to UVA II (320-340 nm) radiation after immunization suppresses immunologic memory and the elicitation of delayed-in-time hypersensitivity reactions. Previous studies indicated that the mechanisms underlying UVA-induced immune suppression are similar to those described for UVB-induced immune suppression, i.e. transferred by T regulatory cells, overcome by repairing DNA damage, neutralizing interleukin (IL)-10 activity, or injecting recombinant IL-12. Here we continued our examination of the mechanisms involved in UVA II-induced suppression. Antibodies to cis-urocanic acid blocked UVA-induced immune suppression. Treating UVA-irradiated mice with histamine receptor antagonists, calcitonin gene-related peptide (CGRP) receptor antagonists or platelet activating factor receptor antagonists blocked immune suppression in UVA-irradiated mice. In light of the fact that cis-urocanic acid and CGRP target mast cells, which can then release platelet activating factor and histamine, we measured UVA-induced immune suppression in mast cell-deficient mice. No immune suppression was noted in UVA-irradiated mast cell-deficient mice. These findings indicate that exposure to UVA II activates many of the same immune regulatory factors activated by UVB to induce immune suppression. Moreover, they indicate that mast cells play a critical role in UVA-induced suppression of secondary immune reactions.  相似文献   

20.
A multimodal activity‐based probe for targeting acidic organelles was developed to measure subcellular native enzymatic activity in cells by fluorescence microscopy and mass spectrometry. A cathepsin‐reactive warhead conjugated to a weakly basic amine and a clickable alkyne, for subsequent appendage of a fluorophore or biotin reporter tag, accumulated in lysosomes as observed by structured illumination microscopy (SIM) in J774 mouse macrophage cells. Analysis of in vivo labeled J774 cells by mass spectrometry showed that the probe was very selective for cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation‐induced autophagy, a catabolic pathway involving lysosomes, showed a large increase in the number of tagged proteins and an increase in cathepsin activity. The organelle‐targeting of activity‐based probes holds great promise for the characterization of enzyme activities in the myriad diseases linked to specific subcellular locations, particularly the lysosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号