首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A new and general method to produce flexible, wearable dye‐sensitized solar cell (DSC) textiles by the stacking of two textile electrodes has been developed. A metal–textile electrode that was made from micrometer‐sized metal wires was used as a working electrode, while the textile counter electrode was woven from highly aligned carbon nanotube fibers with high mechanical strengths and electrical conductivities. The resulting DSC textile exhibited a high energy conversion efficiency that was well maintained under bending. Compared with the woven DSC textiles that are based on wire‐shaped devices, this stacked DSC textile unexpectedly exhibited a unique deformation from a rectangle to a parallelogram, which is highly desired in portable electronics. This lightweight and wearable stacked DSC textile is superior to conventional planar DSCs because the energy conversion efficiency of the stacked DSC textile was independent of the angle of incident light.  相似文献   

3.
4.
5.
6.
Polyelectrolyte block copolymer micelles assembled thin film is switched in response to local photocatalytic reactions on titanium dioxide, resulting in a layer of variable height, stiffness in response to visible light irradiation. Preosteoblasts migrate toward stiffer side of the substrates.

  相似文献   


7.
8.
9.
Three electron donor‐?? bridge‐electron acceptor (D‐π‐A) organic dyes bearing two carboxylic acid groups were applied to dye‐sensitized solar cells (DSSC) as sensitizers, in which one triphenylamine or modified triphenylamine and two rhodanine‐3‐acetic acid fragments act as D and A, respectively. It was found that the introduction of t‐butyl or methoxy group in the triphenylamine subunit could lead to more efficient photoinduced intramolecular charge transfer, thus improving the overall photoelectric conversion efficiency of the resultant DSSC. Under global AM 1.5 solar irradiation (73 mW·cm?2), the dye molecule based on methoxy‐substituted triphenylamine achieved the best photovoltaic performance: a short circuit photocurrent density (Jsc) of 12.63 mA·cm?2, an open circuit voltage (Voc) of 0.55 V, a fill factor (FF) of 0.62, corresponding to an overall efficiency (η) of 5.9%.  相似文献   

10.
Biomolecules evolve and function in densely crowded and highly heterogeneous cellular environments. Such conditions are often mimicked in the test tube by the addition of artificial macromolecular crowding agents. Still, it is unclear if such cosolutes indeed reflect the physicochemical properties of the cellular environment as the in‐cell crowding effect has not yet been quantified. We have developed a macromolecular crowding sensor based on a FRET‐labeled polymer to probe the macromolecular crowding effect inside single living cells. Surprisingly, we find that excluded‐volume effects, although observed in the presence of artificial crowding agents, do not lead to a compression of the sensor in the cell. The average conformation of the sensor is similar to that in aqueous buffer solution and cell lysate. However, the in‐cell crowding effect is distributed heterogeneously and changes significantly upon cell stress. We present a tool to systematically study the in‐cell crowding effect as a modulator of biomolecular reactions.  相似文献   

11.
12.
In continuing search for novel cell differentiation agents, a series of derivatives of indole‐3‐acetic acid and indole‐3‐carboxylic acid were prepared and tested against HL‐60 cells for their differentiation and antiproliferation activities. Among them, N‐ethyl‐1‐benzylindole‐3‐carboxamide ( 14 ) was the most potent, whereas N‐methyl 1‐benzylindole‐3‐acetamide ( 5 ) and N‐methyl 1‐benzylindole‐3‐carboxamide ( 13 ) synergistically potentiated with all‐trans‐retinoic acid to induce cell differentiation as well as antiproliferation. Our results indicate that these compounds are effective cell differentiation and antiproliferation agents in combination with retinoic acid.  相似文献   

13.
Lipid analogues carrying three nitrilotriacetic acid (tris‐NTA) head groups were developed for the selective targeting of His‐tagged proteins into liquid ordered (lo) or liquid disordered (ld) lipid phases. Strong partitioning into the lo phase of His‐tagged proteins bound to tris‐NTA conjugated to saturated alkyl chains (tris‐NTA DODA) was achieved, while tris‐NTA conjugated to an unsaturated alkyl chain (tris‐NTA SOA) predominantly resided in the ld phase. Interestingly, His‐tag‐mediated lipid crosslinking turned out to be required for efficient targeting into the lo phase by tris‐NTA DODA. Robust partitioning into lo phases was confirmed by using viral lipid mixtures and giant plasma membrane vesicles. Moreover, efficient protein targeting into lo and ld domains within the plasma membrane of living cells was demonstrated by single‐molecule tracking, thus establishing a highly generic approach for exploring lipid microdomains in situ.  相似文献   

14.
Perovskite solar cells have triggered a rapid development of new photovoltaic devices because of high energy conversion efficiencies and their all‐solid‐state structures. To this end, they are particularly useful for various wearable and portable electronic devices. Perovskite solar cells with a flexible fiber structure were now prepared for the first time by continuously winding an aligned multiwalled carbon nanotube sheet electrode onto a fiber electrode; photoactive perovskite materials were incorporated in between them through a solution process. The fiber‐shaped perovskite solar cell exhibits an energy conversion efficiency of 3.3 %, which remained stable on bending. The perovskite solar cell fibers may be woven into electronic textiles for large‐scale application by well‐developed textile technologies.  相似文献   

15.
A targeted micellar drug delivery system is developed from a biocompatible and biodegradable amphiphilic polyester, poly(Lac‐OCA)‐b‐(poly(Tyr(alkynyl)‐OCA)‐g‐mannose) (PLA‐b‐(PTA‐g‐mannose), that is synthesized via controlled ring‐opening polymerization of O‐carboxyanhydride (OCA) and highly efficient “Click” chemistry. Doxorubicin (DOX), a model lipophilic anticancer drug, can be effectively encapsulated into the micelles, and the mannose moiety allows active targeting of the micelles to cancer cells that specifically express mannose receptors, which thereafter enhances the anticancer efficiency of the drug. Comprised entirely of biodegradable and biocompatible polyesters, this micellar system demonstrates promising potentials for targeted drug delivery and cancer therapy.

  相似文献   


16.
Affinity‐based cell separation is label‐free and highly specific, but it is difficult to efficiently and gently release affinity‐captured cells due to the multivalent nature of cell‐material interactions. To address this challenge, we have developed a platform composed of a capture substrate and a cell‐releasing molecular trigger. The capture substrate is functionalized with a cell‐capture antibody and a coiled‐coil A . The cell‐releasing molecular trigger B ‐PEG (polyethylene glycol), a conjugate of a coiled‐coil B and polyethylene glycol, can drive efficient and gentle release of the captured cells, because A / B heterodimerization brings B ‐PEG to the substrate and PEG chains adopt extended conformations and break nearby multivalent antibody‐biomarker interactions. No enzymes or excessive shear stress are involved, and the released cells have neither external molecules attached nor endogenous cell‐surface molecules cleaved, which is critical for the viability, phenotype, and function of sensitive cells.

  相似文献   


17.
This study analyzed the electrical properties of a multiple‐cells using the electric cell‐substrate impedance sensing, a scalable three‐dimensional electrode array and an equivalent circuit model (ECM). The experimental results validated the accuracy and validity of the extraction method for the ECM. The ECM simulation results using the electrical properties extracted by measuring 52 HeLa cells successfully forecasted the impedance magnitudes and phases for 15, 29, 78, and 98 HeLa cells. Comparing the ECM simulations and measurements, the maximum average errors in magnitude and phase were 3.06 % and 4.67 %, suggesting the number of HeLa cells can be classified by their electrical properties.  相似文献   

18.
19.
The electrical impedance analysis of single cells can provide information on cells’ pathological condition in various environments. Cell electrical properties are affected by factors such as the location, adhesion, and size of the cell. The proposed microfluidic device captures a single cell, maintains growth conditions, and allows single‐melanoma‐cell impedance to be measured using an impedance analyzer and a function generator. The rate of impedance variation (ROIV) can be used to determine cell growth conditions. Cellular apoptosis affects cell size and membrane surface area, and thus the electrical properties of cells. At 24 h without Antrodia cinnamomea (AC) addition, ROIV was 15.23 %, 17.04 %, and 12.60 % at temperatures of 34 °C, 37 °C, and 40 °C, respectively. At 24 h and 37 °C, ROIV was 17.04 %, 40.37 %, and 45.02 % for AC concentrations of 0, 20, and 40 µL/mL, respectively. The results show that the cell impedance variation of cells cultured without AC is much lower than that of cells cultured with AC. Regarding cellular morphology, with AC addition, the cells shrank obviously after 24 h, whereas they barely shrank without AC addition.  相似文献   

20.
To each his own : An addressable electrochemical device consisting of orthogonally arranged rows and columns of electrodes has been constructed to monitor protein expression in genetically engineered cells at the single‐cell level. The response based on redox cycling reflected the different expression levels of the enzyme from individual HeLa cells transfected with a plasmid vector including secreted alkaline phosphatase.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号