首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper, Ce(IV)–Y, Cu(II)–Y and Cu(II)–Ce(IV)–Y adsorbents were prepared by the liquid-phase ion-exchange Y zeolites with combined Cu and Ce ions at low temperature and room pressure. The adsorbents were characterized by means of X-ray diffraction, N2-adsorption specific surface area measurements (BET), X-ray photoelectron spectroscopy, Pyridine adsorption infrared spectroscopy and Fourier transform infrared. The adsorptive desulfurization properties of these three adsorbents were studied in a fixed-bed unit through a model gasoline which made up of 1-octane solution of the refractory sulfur compounds (Such as thiophene and benzothiophene) and a certain amount of toluene or cyclohexene. The results indicate that Cu(II)–Ce(IV)–Y bind the organic sulfur compounds through two types of adsorption modes: π-complexation and direct sulfur–adsorbent interaction. The adsorption selectivity of sulfur compounds onto Cu(II)–Ce(IV)–Y decreased in the order: benzothiophene > 2,5-dimethylthiophene > 3-methylthiophene > thiophene. The effect of competition components on the metal ion-exchanged Y zeolites for sulfur removal in the order: cyclohexene > toluene. The Cu(II)–Ce(IV)–Y possesses the high sulfur adsorption capacity similar to Cu(II)–Y and high selectivity for sulfur compounds similar to Ce(IV)–Y, which can be attributed to the synergistic interaction between Cu2+ and Ce4+.  相似文献   

2.
Zeolites NaY and Ce(IV)Y were employed as adsorbents to remove organic sulfur compounds from model gasoline(MG) solutions with and without toluene in static adsorption experiments at room temperature(RT) and atmospheric pressure.The adsorbents were characterized by XRD,XRF and pyridine infrared spectrum(IR).The adsorption experiments show that the desulfurization performance of Ce(IV)Y is much better than that of NaY.The sulfur removal over both NaY and Ce(IV)Y decreases with the increase of toluene concentration in MG,however,the decline tendency on Ce(IV)Y is smooth,and it is steep on NaY.FT-IR spectra of thiophene adsorption indicate that thiophene molecules are mainly adsorbed on NaY via π electron interaction,but on Ce(IV)Y,in addition to the π electron interaction,both Ce4+-S direct interaction and protonation of thiophene also play important roles.Toluene molecules are adsorbed on NaY also via π electron interaction.Although the amount of Brnsted acid sites is increased due to the introduction of Ce4+ ions into NaY zeolite,it is not found to influence the adsorption mode of toluene over Ce(IV)Y.Compared with NaY zeolite,the improved desulfurization performance over Ce(IV)Y for removing organic sulfur compounds from MG solution,especially those containing large amount of aromatics,may be ascribed to the direct Ce(IV)-S interaction,which is much resistant to the influence resulted from toluene adsorption.  相似文献   

3.
采用液相离子交换Cu、Ce离子制备了Cu(I)-Y、Ce(IV)-Y和Cu(I)-Ce(IV)-Y吸附剂,利用XRD、BET等技术对吸附剂进行了表征。通过静态实验考察了制备条件对Cu(I)-Ce(IV)-Y吸附剂脱硫性能的影响,通过固定床实验研究了吸附剂的穿透硫容,同时,在含噻吩与苯并噻吩的正辛烷模拟油中,分别加入甲苯、环己烯、吡啶配成新的模拟油,探究了吸附剂的脱硫选择性。结果表明,离子交换时间48 h,焙烧温度550℃,Cu/Ce物质的量比1∶1下制备的Cu(I)-Ce(IV)-Y吸附剂具有适宜的脱硫活性。在含甲苯、环己烯模拟油中,Cu(I)-Ce(IV)-Y吸附剂具有最好的脱硫性能,相同浓度的甲苯、环己烯和吡啶对各吸附剂脱硫性能的影响顺序为吡啶环己烯甲苯。引入Cu+可改善吸附剂的脱硫活性,引入Ce4+可改善吸附剂对硫化物的选择性,Cu+和Ce4+的协同作用使Cu(I)-Ce(IV)-Y兼具有高的硫容和抗芳烃、烯烃能力。  相似文献   

4.
Several metal-based ionic liquids (ILs) were synthesized and used as extractants for the desulfurization of dibenzothiophene (DBT) in simulated fuel oil. The effects of several anion and metal ions, n(ILs)/n(metal) as mole ratio, VIL/Voil and extractive times on the removal ratio of DBT were investigated in detail. The results showed that [BMIM]HSO4/FeCl3(BMIM was short for 1-butyl-3-methyl imidazole) was superior to the other ILs for the extractive desulfurization. A total of 100% of DBT was removed at room temperature in 5 min with V[BMIM]HSO4=FeCl3=Voil=1:1. The extractive activity of [BMIM]HSO4/FeCl3 IL did not change almost after five runs. Extractive desulfurization of different sulfur compounds and commercial diesel fuel oil were also examined. The removal ratios of the sulfur compounds as the reaction substrates were all over 90% and the sulfur content of commercial diesel oil decreased to 120 ppm from 12,400 ppm.  相似文献   

5.
采用共沉淀法制备TiO2-CeO2光催化吸附脱硫材料,通过低温N2吸附脱附和X射线衍射等技术对TiO2-CeO2的物理化学性质进行了表征。结果表明,紫外光辐射显著提高了TiO2-CeO2的吸附脱硫性能;柴油中有机硫在TiO2-CeO2表面发生了光催化氧化转化为极性较强的砜类,可选择性地吸附在材料表面而被脱除。当TiO2-CeO2材料中钛铈物质的量比为9:1、煅烧温度为500℃时,其光催化吸附协同脱硫效果最好;在紫外光辐射下反应5 h,油品中DBT的脱除率高达99.6%。TiO2-CeO2光催化吸附协同脱硫工艺可有效解决吸附脱硫工艺中芳烃竞争吸附导致吸附脱硫选择性低的问题;在模拟油品中添加质量分数为25%的甲苯,反应7 h后油品脱硫率仍高达96.6%。TiO2-CeO2对不同硫化物的光催化吸附协同脱硫效果顺序为:4,6-DMDBT> DBT> BT。TiO2-CeO2经四次再生循环使用后,脱硫率没有明显降低。  相似文献   

6.
Regulations on the permissible levels of sulfur in transportation fuels are becoming ever more strict, with a global shift towards “zero sulfur” fuels, and the revamp of existing hydrodesulfurization (HDS) facilities to meet these lower caps is cost-prohibitive. Metal-catalyzed sulfoxidation chemistry is viewed as an economically viable desulfurization strategy that could complement conventional HDS technology. In the present work, the complex [η5-IndMo(CO)3Me] ( 1 ) (Ind = indenyl) was employed in the catalytic oxidative desulfurization (CODS) of model and real liquid fuels, using aqueous hydrogen peroxide (H2O2) as oxidant. After optimization of the CODS reaction parameters (diesel/H2O2 ratio, catalyst amount, temperature), a high-sulfur (2000 ppm) model diesel containing benzothiophene, dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene could be completely desulfurized within 2 hr under solvent-free conditions or in the presence of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) as extraction solvent. The catalyst formed under solvent-free conditions could be recycled without a significant decrease in desulfurization activity. The high performance of the CODS system was verified in the sulfur removal from a commercial untreated diesel fuel with a sulfur content of 2300 ppm, and a jet fuel with a sulfur content of 1100 ppm. Solvent-free CODS in combination with initial/final extraction gave desulfurization efficiencies of 70% for the diesel fuel and 55% for the jet fuel. CODS with [BMIM]PF6 in combination with initial/final extraction led to a sulfur removal of 95.9% for the diesel fuel, which is one of the best results yet reported for ODS of commercial diesels.  相似文献   

7.
通过液相离子交换法制备了Cu(I)Y、Ni Y、Ce Y分子筛,以XRD、低温N2吸附-脱附、NH3-TPD、吡啶红外Py-FTIR等方法对其进行物性表征。利用固定床技术、WK-2D微库伦仪及硫化学发光检测GC-SCD色谱评价了改性分子筛对于硫含量300μg/g模拟油(含硫化合物二丙硫醚、环己硫醇和1-庚硫醇与壬烷配制)及HDS汽油的吸附脱硫性能。结果表明,吸附剂对模拟油和HDS燃料油品中硫醇硫醚具有吸附效果,且改性后的分子筛在吸附脱硫过程中,强的B酸对于吸附脱硫有负作用,会使油品中硫醇硫醚发生催化反应,聚合的大分子硫化物遮盖及阻塞吸附活性位点,从而使吸附剂不能够完全地吸附硫化物,造成吸附硫容较小,而弱L酸无催化活性对吸附脱硫有正面影响。  相似文献   

8.
选取苯和1-辛烯作为模拟汽油中的芳烃和烯烃, 分别研究它们对Ce(IV)Y分子筛选择性吸附脱硫的影响. 结果表明, 吸附剂的选择性吸附脱硫性能随着模拟油中苯和1-辛烯含量的增加而显著降低. 借助傅立叶变换红外光谱(FT-IR)、紫外漫反射光谱(UV-DRS)技术研究发现, Ce(IV)Y分子筛对苯和1-辛烯的吸附模式及影响脱硫的机理是不同的. Ce(IV)Y分子筛阳离子和苯形成π络合作用, 作用力较弱, 容易脱附; 而与1-辛烯的双键发生σ-π络合, 不容易脱附. 在Ce(IV)Y分子筛选择性吸附含苯模拟油中的硫化物时, 由于苯的存在, 苯和噻吩在分子筛表面存在严重竞争吸附, 影响了吸附剂的选择性脱硫. 而在含1-辛烯的模拟油中, 由于1-辛烯直接和分子筛发生强相互作用, 占据了吸附剂的活性位, 导致Ce(IV)Y分子筛的脱硫性能显著降低.  相似文献   

9.
以NaY分子筛为载体,通过液相离子交换法制备了经Ag、Ce双金属离子改性的AgCeY吸附剂,并利用UV-vis、XRD、BET、ICP、XPS和FT-IR技术对吸附剂进行了表征。以噻吩/苯并噻吩/正辛烷/甲苯体系为汽油模拟体系,考察了制备条件和吸附条件对吸附剂脱硫性能的影响以及吸附剂再生性能。结果表明,AgCeY吸附剂上Ag、Ce这两种金属元素分别以Ag+、Ce4+形式存在,AgCeY吸附剂具有类似于AgY的高的脱硫性能,又具有类似于CeY的高的吸附选择性,AgCeY对噻吩(TP)和苯并噻吩(BT)的吸附选择性顺序为BT > TP;最适宜的制备条件为先交换Ag后交换Ce离子、离子交换24 h、Ce/Ag物质的量比为2.5、500 ℃焙烧;在原料20 mL、AgCeY吸附剂用量0.2 g、吸附温度50 ℃、吸附时间60 min下,噻吩脱硫率可达到59.0%,苯并噻吩脱硫率达到96.5%。  相似文献   

10.
采用液相离子交换(LPIE)法制备了CeY分子筛,并研究烯烃和芳烃对其吸附脱硫性能的影响. 利用固定床穿透曲线技术研究吸附剂的脱硫性能,结果表明:烯烃和芳烃的存在均导致吸附剂吸附硫容量减少,然而,烯烃的影响明显强于芳烃. 采用原位傅里叶变换红外(FTIR)光谱技术研究噻吩、环己烯和苯的吸附行为,结果发现:烯烃和芳烃降低吸附剂脱硫性能的实质分别为吸附剂表面酸性导致的酸催化反应和π-络合吸附的芳烃分子与硫化物分子的竞争吸附. 另外,烯烃的影响取决于吸附剂的表面酸性,尤其是强B酸(Brönsted 酸)中心.这是由于B酸中心会导致烯烃和噻吩发生质子化反应,且质子化物种易于进一步发生低聚反应. 生成的低聚物覆盖吸附活性中心导致吸附剂对其它噻吩分子的吸附能力降低.  相似文献   

11.
The sulfur content of diesel fuel is of environmental concern because sulfur can facilitate the formation of diesel particulate matter (DPM) and sulfur dioxide (SO2) in the exhaust can poison catalytic converters. The US Environmental Protection Agency (EPA) has established more stringent regulations to reduce the sulfur content of diesel fuels in the near future. In this study, various types of organosulfur compounds in DPM extracts and the corresponding fuels have been determined by gas chromatography with atomic emission detection. The diesel fuels used have sulfur contents of 2284 and 433 ppm, respectively, and are labeled as high-sulfur and low-sulfur diesel fuels. The compounds identified are mainly polycyclic aromatic sulfur heterocycles (PASHs). In the fuels tested, trimethylbenzothiophenes (TMBTs), dibenzothiophenes (DBTs), and 4-methyldibenzothiophene (4-MDBT) were the most abundant sulfur compounds, while larger PASH compounds were more abundant in DPM extracts. The high-sulfur diesel fuel contained a larger proportion of PASHs with one or two rings (lighter PASHs). In DPM, the concentrations of total organic sulfur and individual PASHs are higher for the high-sulfur diesel fuel, and the relative percentage of one or two-ring PASHs is higher as well. The influence of engine load on the DPM composition was also examined. With increasing load, the PASH concentration in DPM decreased for lighter PASHs, increased for heavier PASHs, and had a bell-shaped distribution for PASHs in between.  相似文献   

12.
Typical ion-exchanged modified Y zeolites (AgY and CeY) were prepared for sulfur removal. The adsorption and desorption behavior of typical sulfur and hydrocarbon molecules in various Y zeolites has been investigated by the adsorption breakthrough and on site solvent washing experiments, as well as computer simulation. Breakthrough experiments showed that the adsorption capacity for thiophenic sulfur increased for the studied adsorbents as follows: CeY > AgY > NaY. The higher initial sulfur concentration accelerated the appearance of breakthrough, and the outlet sulfur concentration, in all cases, cannot reach the corresponding initial sulfur level. The concentration profile of washing solvent during desorption process showed that most of the sulfur compounds could be recovered at initial desorption stage. The desorption rates of typical Y zeolites follow the order: NaY > AgY > CeY, which is the reverse as that found in adsorption capacity. The distinct adsorption and desorption behavior of CeY, AgY, and NaY zeolites was markedly related with their various binding force (S-M coordination, π-complexation, and Van der Waals force) with sulfur compounds. The adsorption isotherms and density distribution snapshots study by computer simulation confirmed the preferential adsorption of thiophenic sulfur.  相似文献   

13.
采用液相离子交换法制备了Cu(I)Y、NiY、CeY分子筛,利用XRD、ICP/MS、N2吸附脱附等技术对其物化性质进行了表征,使用固定床技术和色谱-硫化学发光检测(SCD)偶联技术系统考查了改性Y分子筛对FCC汽油的选择性吸附脱硫性能,着重探讨了FCC汽油选择性吸附脱硫过程中硫化物的脱除规律。结果表明,不同金属阳离子改性的Y分子筛对FCC汽油中不同硫化物选择性有所不同,对CeY分子筛:2-甲基-5-乙基噻吩<噻吩3硫醇< C2噻吩<2或3-甲基噻吩<苯并噻吩<3,4-二甲基噻吩≈2,3,4-三甲基噻吩<四氢噻吩,而NiY与Cu(I)Y选择性相同:C3硫醇<2-甲基-5-乙基噻吩2噻吩<2或3-甲基噻吩<噻吩<苯并噻吩<3,4-二甲基噻吩≈2,3,4-三甲基噻吩<四氢噻吩,改性Y分子筛对噻吩及小分子烷基取代噻吩类硫化物的选择性较差。  相似文献   

14.
Adsorption of the organic sulfur compounds thiophene (TP) and 1-benzothiophene (1-BTP) in an organic model solution of hydrodesulfurizated gasoline (heptane with 1 wt% toluene and 0.156 mM (5 ppmw as sulfur) TP or 1-BTP) was studied by a batch method at 80 degrees C using metal-ion-exchanged Y-zeolites. Although NaY-zeolite or its acid-treated material rarely adsorbed the organic sulfur compounds, NaY-zeolites exchanged with Ag+, Cu2+, and Ce3+ ions and NH(4)Y-zeolites exchanged with Ce3+ ions showed markedly high adsorptive capacities for TP and 1-BTP. The sulfur uptake increased in the order CuY-zeolite(Na)相似文献   

15.
柴油脱硫的机理研究以及反应中的溶剂效应   总被引:2,自引:0,他引:2  
王雪松 《广州化学》2007,32(1):62-67
柴油的脱硫技术分为加氢脱硫和非加氢脱硫。在非加氢脱硫的研究中,氧化脱硫技术具有反应条件温和、不使用昂贵的氢气、投资和操作费用低等优点日益受到重视。文章介绍了柴油的脱硫技术的机理方面的研究进展。其中包括加氢脱硫的反应网络;以及氧化脱硫研究中,光化学氧化体系和有机过氧化物氧化体系中DBT的氧化机理。在不同的反应体系中,溶剂对含硫化合物的脱除也有很大的影响.  相似文献   

16.
以不同焙烧温度和Ce负载量的CeY分子筛为研究对象,运用XRD及N_2吸附表征其织构性质;运用吡啶吸附红外光谱法剖析了分子筛中活性位的化学属性;采用固定床评价其对噻吩模拟油的吸附脱硫性能及芳烃和烯烃对噻吩脱除的影响;并结合红外光谱和GC-SCD技术分析了其脱硫机制。结果表明,CeY样品经150℃焙烧后,其超笼中具备高含量的B酸和Ce羟基化物种活性位,两者协同增强了噻吩低聚反应能力,进而提高了其吸附穿透硫容量(18.45 mg (S)/g);而提升焙烧温度和Ce负载量会严重降低其有效活性位的数量,削弱了噻吩低聚反应能力,其吸附穿透硫容量显著减小(4.03 mg (S)/g)。当加入烯烃和芳烃后,CeY-12.3-150吸附剂对含低浓度(质量分数)1-己烯(1.0%)和苯(0.1%)的噻吩模拟油依旧保持较高吸附穿透硫容量;但随两者含量的持续增加,其硫容量急剧下降。其主要分别归因于噻吩烷基化反应的发生及“S-H”键的作用模式。  相似文献   

17.
研究了不同硫化物在CeY上吸附后的红外光谱,总结了吸附作用机理;以噻吩作为模拟油中的硫化物,根据红外光谱信息研究烯烃对CeY分子筛选择性吸附脱硫性能的影响。结果表明,不同硫化物与CeY分子筛的作用方式不尽相同,但都在分子筛表面发生催化反应;CeY分子筛阳离子和烯烃的双键发生了σ—π络合,从而跟与CeY存在SM作用的噻吩形成了竞争吸附。噻吩存在下,烯烃在CeY表面发生了更为严重的催化反应,生成了大分子聚合物,占据吸附剂活性位的同时堵塞了分子筛表面孔道,导致CeY分子筛的脱硫性能显著降低。  相似文献   

18.
A new titanium(IV) oxide-hectorite nanofilm photocatalyst was prepared on quartz slides. It was evaluated in the photooxidation of dibenzothiophene (DBT) in nonpolar organic solution (tetradecane), as a model for diesel fuel. A removal regimen was developed consisting of catalytic photooxidation followed by adsorption of products on silica gel. Photooxidation of DBT was performed with and without catalyst, at 254 and 300 nm. Comparison was made with a commercially available TiO(2) catalyst, Degussa P25. The catalyst was analyzed by nitrogen adsorption, XRD, SEM, and TGA-DTA. DBT concentrations were measured by HPLC and UV spectrophotometry. Preliminary qualititative analysis of products was performed by UV and HPLC. Results indicated that the outlined process was effective in reducing sulfur levels to below 10 ppm sulfur.  相似文献   

19.
Thermolysis of 4-aminophenyl benzyl sulfide at 523 K in the hydrogen donor solvent (HDS), 9,10-dihydroanthracene (AnH2), gave 4-aminothiophenol and toluene as the predominant products of the homolytic S-C bond cleavage. Under these conditions, a portion of the 4-aminothiophenol was desulfurized to aniline with first-order kinetics and with a rate constant estimated by kinetic modeling to be 7.0x10(-6) s-1. Starting with 4-NH2C6H4SH at 523 K, it was found that sulfur loss was more efficient in the non-HDSs, anthracene and hexadecane, than in AnH2. Under similar (competitive) reaction conditions, YC6H4SHs with Y=H, 4-CN, and 3-CF3 were completely inert; with Y=4-CH3O, there was some very minor desulfurization, whereas with Y=4-N(CH3)2 and 4-N(CH3)(H), the sulfur extrusions were as fast as that for Y=4-NH2. We tentatively suggest that this apparently novel reaction is a chain process initiated by the bimolecular formation of diatomic sulfur, S2, followed by a reversible addition of ground state, triplet 3S2 to the thiol sulfur atom, 4-NH2C6H4S upward arrow(SS upward arrow)H, and insertion into the S-H bond, 4-NH2C6H4SSSH. In a cascade of reactions, aniline and S8 are formed with the chains being terminated by reaction of 4-NH2C6H4S upward arrow(SS upward arrow)H with 4-NH2C6H4SH. Such a reaction mechanism is consistent with the first-order kinetics. That this reaction is primarily observed with 4-YC6H4SH having Y=N(CH3)2, N(CH3)(H), and NH2 is attributed to the fact that these compounds can exist as zwitterions.  相似文献   

20.
An adsorbent catalyst was proposed to reduce the leaching of active species of the catalyst and enhance the kinetics of the oxidative desulfurization (ODS) reaction of dibenzothiophene (DBT) from model diesel fuel. By loading phosphotungstic acid (HPW) species onto a zirconium-modified hexagonal mesoporous silica (Zr-HMS), a novel catalyst was synthesized and utilized for the ODS process. An ultrafast ODS kinetics was specifically identified using 20%HPW/Zr-HMS as catalyst. Within 30 min, more than 95% of the 350 ppm DBT content of the model fuel was oxidized by H2O2. The synthesized catalyst retained its sulfur removal ability even after five subsequent ODS reactions and the leaching of HPW species was found to be suppressed successfully. Overall, this new reusable catalyst provided an alternative for highly efficient ultra-deep desulfurization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号