首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
以商品活性炭(AC)为正极, 预锂化中间相碳微球(LMCMBs)为负极, 组装成锂离子电容器(LICs). 用X射线衍射(XRD)对LMCMB 电极材料的晶体结构进行了表征和分析, 预锂化量(PIC)小于200 mAh·g-1 时,LMCMB电极材料基本保持了原始的石墨晶体结构. 利用三电极装置, 测试了充放电过程中LICs 的正、负极及整电容器的电压变化曲线. 以LMCMB为电极, 锂离子电容器负极的工作电压变低, 并且电压曲线更加平坦, 同时正极也可以利用到更低的电压区间. 对比锂离子电容器MCMB/AC, LMCMB/AC在比能量密度、循环性能和库仑效率电化学性能方面都得到了改善. 在电压区间2.0-3.8 V 下, 100 次循环后, 放电比容量的保持率从74.8%增加到100%, 库仑效率从95%增加到100%. LMCMB/AC电容器容量不衰退的直接原因是由于AC正极极化变小. 在2.0-3.8 V和1.5-3.8 V电压区间内, LMCMB/AC锂离子电容器的比能量密度分别可达85.6和97.9 Wh·kg-1.  相似文献   

2.
以超级电容器的电极材料制备、性质研究及对组装的非对称超级电容器的性能研究为核心内容,提高超级电容器电化学性能为主要目的,采用水热合成法在碳布基底上合成三氧化钨/碳布和活化后的碳布为超级电容器的电极材料。采用SEM、XRD表征方法对制备的材料进行了形貌表征及物相分析;使用上海辰华电化学工作站对电极材料进行了循环伏安、恒流充放电、交流阻抗等电化学性能测试. 最终得到以三氧化钨/碳布为正极材料、活化后的碳布为负极材料组装成不对称柔性电容器,进行电化学测试,其电位窗口提高到0~1.6 V,电流密度61.9 mA·cm-2时,电容达到58.96 F·cm-2,功率密度0.48 W·cm-2时,能量密度为20.36 mWh·cm-2,同时在电流密度8 mA·cm-2时,循环3000次时表现出良好的循环性能,相较于对称型超级电容器,倍率性能更加优异.  相似文献   

3.
锂离子混合型电容器兼有锂离子电池和超级电容器的优点,在电化学储能领域具有广泛的应用前景. 但其产业化仍存在一系列的基础及工艺方面的问题,具体包括器件结构设计、电极材料筛选、预嵌锂工艺和电解液与电极的界面等. 本文结合作者课题组的研究工作介绍了近年来高能量密度的锂离子混合型电容器的研究进展,内容涉及锂离子电容器正/负极材料的筛选、预嵌锂工艺的优化、内并联结构的锂离子电池型超级电容器复合正极组成材料的调控、隔膜的选择、电解液的组成、以及器件的高/低温性能,分析了锂离子电容器的容量衰减机制,探讨了锂离子电池型超级电容器的储能机制,提出了未来对高能量密度的锂离子混合型电容器研究的展望.  相似文献   

4.
电化学混合电容器用新型聚吡咯/介孔碳纳米复合电极   总被引:1,自引:0,他引:1  
采用介孔碳CMK-3作为载体,通过化学原位聚合的方法制备出一种新型的聚吡咯/介孔碳(PPy-CMK-3)纳米复合材料.将该纳米复合材料作为正极,配以介孔碳CMK-3为负极和1.0mol·L-1NaNO3中性电解液,组装成为电化学混合电容器.电化学测试表明:在5.0mA·cm-2电流密度和1.4V充放电电位条件下,其放电比容量达57F·g-1,电容器功率密度为2.5×102W·kg-1,能量密度达17Wh·kg-1.当电流密度从5.0mA·cm-2增加至50mA·cm-2时,电容器的容量保持率在80%以上,显示高倍率充放电特性优异.此外,聚吡咯-介孔碳/介孔碳电化学混合电容器易活化,并具有优异的充放电效率和良好的循环稳定性能.  相似文献   

5.
二氧化锰超级电容器电极电化学性质   总被引:1,自引:0,他引:1  
张莹  刘开宇  张伟  王洪恩 《化学学报》2008,66(8):909-913
采用液相法制得α-MnO2电极材料, 制备成电极并组装成对称型超级电容器. 采用恒流充放电、循环伏安、交流阻抗等方法在三电极体系下对超级电容器的正、负极进行测试, 分别研究它们在充放电过程中的电化学性能. 结果发现, 正极在0.31~0.41 V, 0.43~0.50 V (vs. Hg/HgO)发生电化学反应, 对电容器电压的影响起主要作用, 而负极则表现稳定未发生反应; 随着电极电位的增加, 反应电阻与接触电阻减小, 超级电容器电阻主要由负极决定; 负极表面双电层的形成速度小于正极, 而受电位影响的程度大于正极, 其电荷保持能力优于正极.  相似文献   

6.
采用液相法制得α-MnO2电极材料, 制备成电极并组装成对称型超级电容器. 采用恒流充放电、循环伏安、交流阻抗等方法在三电极体系下对超级电容器的正、负极进行测试, 分别研究它们在充放电过程中的电化学性能. 结果发现, 正极在0.31~0.41 V, 0.43~0.50 V (vs. Hg/HgO)发生电化学反应, 对电容器电压的影响起主要作用, 而负极则表现稳定未发生反应; 随着电极电位的增加, 反应电阻与接触电阻减小, 超级电容器电阻主要由负极决定; 负极表面双电层的形成速度小于正极, 而受电位影响的程度大于正极, 其电荷保持能力优于正极.  相似文献   

7.
组装高能量密度的非对称超级电容器需要使用比电容大、 体积变化小且循环稳定性好的电极材料. 过渡金属硫化物(TMSs)与纳米碳材料的复合物是此类电极材料之一. 采用水热法合成了由Cu-Mo硫化物在微波剥离的还原氧化石墨烯表面生长的复合材料(CuS-MoS2/MErGO). 此复合材料在电流密度为2 A/g时具有高达861.5 F/g的比电容和良好的循环稳定性. 将1.6 V的电池电压施加在由NiS/MErGO为正极, CuS-MoS2/MErGO为负极组装成的不对称超级电容器上时, 该电容器的功率密度为1.28 kW/kg, 且能量密度保持为54.2 W·h·kg-1. 结果表明, TMS复合材料是一种很有前途的高性能电化学储能材料, 尤其是用于非对称超级电容器的组装.  相似文献   

8.
锂离子电池电极材料研究进展   总被引:44,自引:0,他引:44  
本文综述了锂离子电池中正、负电极材料的制备、结构与电化学性能之间的关系。正极材料包括嵌锂的层状L ixMO 2 和尖晶石型L ixM 2O 4 结构的过渡金属氧化物(M =Co、N i、M n、V ) , 负极材料包括石墨、含氢碳、硬碳和金属氧化物。侧重于阐述控制锂离子电池循环过程中可逆嵌锂容量和稳定性的嵌锂电极材料的结构性质。给出118 篇参考文献。  相似文献   

9.
以磷酸二氢钠(NaH2PO4)为磷源, 通过溶剂热法制备了P掺杂的TiO2/C (P-TiO2/C)纳米管以改善TiO2的储锂性能. 电化学测试表明: P-TiO2/C负极具有高的比容量(在0.1 A•g-1的电流密度下达到335 mAh•g-1)、优异的倍率性能(在2.0 A•g-1的电流密度下为92 mAh•g-1)及循环性能(在1.0 A•g-1的电流密度下经过1000次循环后放电比容量仍维持在135 mAh•g-1). 并且, P-TiO2/C在2 mV•s-1时的赝电容贡献约为96%. 由P-TiO2/C负极和活性炭正极组装的锂离子电容器在250 W•kg-1的功率密度下能量密度能够达到74.7 Wh•kg-1. 此外, 该锂离子电容器在10000次循环后比电容保持率约为43%. 此外, 该器件在1.0 A•g-1下循环10000次后充满电仍可点亮18只红色的LED灯组成的“LIC”字样. 该工作为高性能锂离子电容器TiO2负极材料的设计提供了思路.  相似文献   

10.
由于高安全、高功率和超长循环寿命等优点,钛酸锂负极材料近年来得到了广泛关注,基于钛酸锂负极的高性能超级电池电容器和锂离子电池也成为近年来的研究热点. 本文采用化学氧化法制备了有机物正极材料聚三苯胺,并通过经典的电化学测试方法研究了其储能机理及相应的电极动力学过程. 研究结果表明,该有机物正极的储能机制主要是基于阴离子的吸脱附反应,并表现出85 mA·g-1的可逆容量,且其动力学过程不受扩散控制,属于典型的赝电容行为. 将该正极与钛酸锂负极结合构成了新型的电池电容体系,并对其电化学性能进行了研究,结果表明该体系具有高功率特性,且能量密度高于传统的混合型超级电容器. 此外,本文还对该有机物正极的不足和实际应用中所面临的挑战做了初步分析.  相似文献   

11.
新能源战略体系的建设和电子技术的飞速发展对储能器件的性能提出了更高的要求,锂离子电容器是将锂离子电池和双电层电容器“内部交叉”的新型混合储能器件,兼具高能量密度和高功率密度,近年来引起了国内外的广泛关注.本文阐述了锂离子电容器的工作原理和国内外产业发展现状,总结了碳负极的预赋锂技术、电极材料与体系匹配性研究等关键技术前沿的研究成果,并提出了后续产业化研究中所需要解决的实际问题.  相似文献   

12.
张树高 《电化学》2000,6(1):40-44
以有机热解碳(石墨)为原料,用喷雾热蒸发法制备了用于锂离子电池负极的碳膜,用循环伏安法和恒电流充放电法测试了所获碳膜的电化学性能,测试结果表明,在第一循环周期中存在一个还原峰,该还原峰对应在电极表面形成固体电解质中间相膜;当充放电电流大小适合时,容量和X值都较大。基于这些实验结果,可以认为所获得的碳膜作用负极以相对测试其他正极材料电化学性能。  相似文献   

13.
采用KOH活化法制得高比表面积的活化多孔碳(aHPC),借助原位化学氧化法制得疏松多孔的活化多孔碳负载聚苯胺纳米复合材料(aHPC@PANI),并分别以aHPC及aHPC@PANI为负极与正极,以四乙基氟硼酸-乙腈为电解液,构建有机非对称超级电容器。电化学测试结果显示:在1A/g电流密度下,aHPC@PANI正极与aHPC负极分别呈现256.7F/g(-0.6~0.8V)及152.4F/g(-2~-0.6 V)的比容量;所组装的有机非对称电容器呈现宽电位窗口(2.8V),高的能量密度(在0.75kW/kg功率密度下为56.2 W·h/kg)及优异的循环稳定性(循环5 000次后其比电容保持率高达92.4%)。  相似文献   

14.
本文首次提出了一种水系锌离子电容器的新型储能体系,其中以五氧化二钒(V2O5)为正极,具有高比表面积的活性炭(AC)为负极,以及三氟甲基磺酸锌(Zn(TfO)2)为电解质. X射线衍射(XRD)证明二价锌离子作为电荷载体,可以在五氧化二钒(V2O5)中进行可逆的嵌入与脱出. 该锌离子电容器的电位窗口可达1.4 V,具有良好的倍率特性及循环稳定性. 电流密度为1000 mA·g-1 时,电容器的比能量密度为4.5 Wh·kg-1,功率密度可达181 W·kg-1. 本工作为发展新型基于多价离子电化学电容器提供了新思路和新方法.  相似文献   

15.
杨柳  齐力  王宏宇 《应用化学》2015,32(11):0-0
为提高电化学电容器的工作电压,采用电池材料LiNi0.5Mn1.5O4(LNMO)为正极,活性炭为负极,组装成混合型电容器并探索了提高其性能的最佳条件。 负/正极质量比增加、充放电截止电压的升高均能显著提高电容器的放电容量和能量密度,在负/正质量比为4,电压0~3 V, 电流密度1×10-3 A/cm2的条件,700次循环后容量保持率达97.5%。 运用三电极体系、电化学阻抗谱等测试手段对此负极活性炭的劣化及其对电容器性能的影响进行了深入探索。  相似文献   

16.
锂离子二次电池已成为日常生活中不可或缺的一部分, 而现有的锂离子电池并不能完全满足电动汽车领域高能量密度的要求, 发展具有高能量密度的电极材料是解决问题的关键. 硅负极因理论比容量高、 脱嵌锂电位低、 来源广泛等优点而备受关注, 但其巨大的体积变化(约300%)以及低的首次库仑效率阻碍了其商业应用. 预锂化技术可以有效提高首次库仑效率、 实现高性能硅基负极, 本文阐述了预锂化的科学必要性, 介绍了各种预锂化的方法以及优缺点, 最后对硅基负极预锂化应用的挑战和前景进行了展望.  相似文献   

17.
每两年举行一次的国际锂电会议(1MLB)旨在促进国际合作和交流,为在锂离子电池领域工作的科学家和工程师提供一个讨论锂电基础研究和技术革新的论坛.本文总结了2012年6月17-22日在韩国济州岛召开的第16届国际锂电会议的学术报告情况.具有较好安全性的磷酸铁锂正极材料和具有较高倍率特性和较好循环性能的纳米电极材料依然是研究热点;同时可以看到,富锂锰基材料、钛酸锂材料、5V尖晶石材料和纳米硅负极材料成为新的研究热点;而锂硫电池、锂空气电池和超级电容器等新电池体系正在引起大家的兴趣和关注.  相似文献   

18.
采用溶剂热法制备了碳纳米管穿插的分级结构五氧化二钒空心球(VOCx). 使用XRD、SEM、循环伏安曲线和充放电曲线研究了不同碳纳米管量对产物结构、形貌和电化学性能的影响. 结果表明,碳纳米管的加入明显改善了VOC的倍率特性. 碳纳米管含量为7.1%时,0.5 A·g-1电流密度下,其比电容达到346 F·g-1,8 A·g-1电流密度时,其电容保持率可达75%. 与活性炭组装成混合电容器,在功率密度为700 W·kg-1时,能量密度达12.6 Wh·kg-1.  相似文献   

19.
锂离子电池薄膜锡负极材料的制备及容量衰减机理研究   总被引:1,自引:0,他引:1  
以电镀的方法在铜基底上沉积薄膜锡作为锂离子电池负极材料. 运用X射线衍射、扫描电镜、电化学循环伏安、电化学充放电和交流阻抗等多种方法对其结构和性能进行表征和研究. 结果表明所制备的薄膜锡电极主要为四方晶系结构, 其初始放电(嵌锂)容量为709 mAh•g-1, 充电(脱锂)容量为561 mAh•g-1. 电化学循环伏安研究发现在嵌/脱锂过程中薄膜锡经历了多种相变过程. 电化学阻抗谱结果说明, 首次嵌锂过程中当电极电位达到1.2 V在电极表面形成SEI膜, 而当电极电位低于0.4 V表面SEI膜出现破裂, 归因于体积膨胀所致. SEM研究表明30次充放电循环后薄膜锡负极出现龟裂现象.  相似文献   

20.
可用至3.5V的碳纳米管阵列超级电容器   总被引:2,自引:0,他引:2  
应用化学气相沉积在钽片和不锈钢片表面直接生长碳纳米管阵列(CNTA)制备超级电容器电极,并分别作正、负极组装有机体系扣式电容器.扫描电子显微镜、循环伏安、恒电流充放电和交流阻抗表征、测试材料的微观形貌和电化学性能.结果表明,该电容器可获得高达3.5 V的工作电压,较长的循环寿命,较好的倍率性能.基于CNTA质量的比功率和比能量性能分别为928 kW.kg-1和19 Wh.kg-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号