首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The accuracy, repeatability, and reproducibility characteristics of a liquid chromatographic method for the determination of ochratoxin A (OTA) in white wine, red wine, and beer were established in a collaborative study involving 18 laboratories in 10 countries. Blind duplicates of blank, spiked, and naturally contaminated materials at levels ranging from < or =0.01 to 3.00 ng/mL were analyzed. Wine and beer samples were diluted with a solution containing polyethylene glycol and sodium hydrogen carbonate, and the diluted samples were filtered and cleaned up on an immunoaffinity column. OTA was eluted with methanol and quantified by reversed-phase liquid chromatography with fluorometric detection. Average recoveries from white wine, red wine, and beer ranged from 88.2 to 105.4% (at spiking levels ranging from 0.1 to 2.0 ng/mL), from 84.3 to 93.1% (at spiking levels ranging from 0.2 to 3.0 ng/mL), and from 87.0 to 95.0% (at spiking levels ranging from 0.2 to 1.5 ng/mL), respectively. Relative standard deviations for within-laboratory repeatability (RSDr) ranged from 6.6 to 10.8% for white wine, from 6.5 to 10.8% for red wine, and from 4.7 to 16.5% for beer. Relative standard deviations for between-laboratories reproducibility (RSDR) ranged from 13.1 to 15.9% for white wine, from 11.9 to 13.6% for red wine, and from 15.2 to 26.1% for beer. HORRAT values were < or =0.4 for the 3 matrixes.  相似文献   

2.
A novel metal‐ion‐mediated complex‐imprinted‐polymer‐coated solid‐phase microextraction (SPME) fiber used to specifically recognize thiabendazole (TBZ) in citrus and soil samples was developed. The complex‐imprinted polymer was introduced as a novel SPME coating using a “complex template” constructed with Cu(II) ions and TBZ. The recognition and enrichment properties of the coating in water were significantly improved based on the metal ion coordination interaction rather than relying on hydrogen bonding interactions that are commonly applied for the molecularly imprinting technique. Several parameters controlling the extraction performance of the complex‐imprinted‐polymer‐coated fiber were investigated including extraction solvent, pH value, extraction time, metal ion species, etc. Furthermore, SPME coupled with HPLC was developed for detection of TBZ, and the methods resulted in good linearity in the range of 10.0–150.0 ng/mL with a detection limit of 2.4 ng/mL. The proposed method was applied to the analysis of TBZ in spiked soil, orange, and lemon with recoveries of 80.0–86.9% and RSDs of 2.0–8.1%. This research provides an example to prepare a desirable water‐compatible and specifically selective SPME coating to extract target molecules from aqueous samples by introducing metal ions as the mediator.  相似文献   

3.
A silica‐based surface magnetic molecularly imprinted polymer for the selective recognition of parabens was prepared using a facile and general method that combined atom‐transfer radical polymerization with surface imprinting technique. The prepared magnetic molecularly imprinted polymer was characterized by transmission electron microscopy, Fourier transform infrared spectrometry and physical property measurement. The isothermal adsorption experiment and kinetics adsorption experiment investigated the adsorption property of magnetic molecularly imprinted polymer to template molecule. The four parabens including methylparaben, ethylparaben, propylparaben, and butylparaben were used to assess the rebinding selectivity. An extraction method, which used magnetic molecularly imprinted polymer as adsorbents coupled with high‐performance liquid chromatography for the determination of the four parabens in fruit juice samples was developed. Under the optimal conditions, the limits of detections of the four parabens were 0.028, 0.026, 0.021, and 0.026 mg/L, respectively. The precision expressed as relative standard deviation ranging from 2.6 to 8.9% was obtained. In all three fortified levels, recoveries of parabens were in the range of 72.5–89.4%. The proposed method has been applied to different fruit juice samples including orange juice, grape juice, apple juice and peach juice, and satisfactory results were obtained.  相似文献   

4.
The aim of this work was to evaluate the use of a molecularly imprinted polymer as a selective solid‐phase extraction sorbent for the clean‐up and pre‐concentration of patulin from apple‐based food products. Ultra high pressure liquid chromatography coupled to ultraviolet absorbance detection was used for the analysis of patulin. The molecularly imprinted polymer was applied, for the first time, to the determination of patulin in apple juice, puree and jam samples spiked within the maximum levels specified by the European Commission No. 1881/2006. High recoveries (>77%) were obtained. The method was validated and found to be linear in the range 2–100 μg/kg with correlation coefficients greater than 0.965 and repeatability relative standard deviation below 11% in all cases. Compared with dispersive solid‐phase extraction (QuEChERS method) and octadecyl sorbent, the molecularly imprinted polymer showed higher recoveries and selectivity for patulin. The application of Affinisep molecularly imprinted polymer as a selective sorbent material for detection of patulin fulfilled the method performance criteria required by the Commission Regulation No. 401/2006, demonstrating the suitability of the technique for the control of patulin at low ppb levels in different apple‐based foods such as juice, puree and jam samples.  相似文献   

5.
A simple, selective, and reproducible molecularly imprinted SPE coupled with HPLC method was developed for monitoring quinoxaline‐1,4‐dioxides in feeds. Molecularly imprinted polymers were synthesized in methanol using mequindox (MEQ) as template molecule and acrylamide as functional monomer by bulk polymerization. Under the optimum SPE conditions, the novel polymer sorbents can selectively extract and enrich carbadox, MEQ, quinocetone, and cyadox from a variety of feeds. The molecularly imprinted SPE cartridge was better than nonimprinted, C18, and HLB cartridges in terms of both recovery and precision. Mean recoveries of four quinoxaline‐1,4‐dioxides from six kinds of feeds spiked at 1.0, 10, and 100 mg/kg ranged between 75.2 and 94.7% with RSDs of less than 10%. The decision limits (CCαs) and the detection capabilities (CCβs) of four analytes were 0.15–0.20 mg/kg and 0.44–0.56 mg/kg, respectively. The class selectivity of the polymers was evaluated by checking three drugs with different molecular structures to that of MEQ.  相似文献   

6.
A highly selective sample cleanup procedure combined with molecularly imprinted SPE was developed for the isolation of crystal violet from seawater and seafood samples. The molecularly imprinted polymer was prepared using crystal violet as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. The crystal violet‐imprinted polymer was used as the selective sorbent for the SPE of crystal violet. An off‐line molecularly imprinted SPE method followed by HPLC with diode‐array detection for the analysis of crystal violet was also established. Good linearity on the molecularly imprinted SPE columns was obtained from 0 to 200 μg/L (R2 > 0.99). The result demonstrated that the proposed method can be used for the direct determination of crystal violet in seawater and seafood samples. Finally, five samples were analyzed and the following crystal violet concentrations were obtained: 0.92 and 0.52 μg/L in two seawater samples, as well as 0.36 and 0.27 μg/kg in two seafood samples. There is no crystal violet detected in the third seawater sample.  相似文献   

7.
Some new molecularly imprinted polymers (MIPs) were prepared by different protocols involving vanillin as the imprinted molecule, methacrylic acid (= 2‐methylprop‐2‐enoic acid; MAA) as the functional monomer, and ethylene glycol dimethacrylate (EGDMA = 2‐methylprop‐2‐enoic acid ethane‐1,2‐diyl ester) as the cross‐linking agent. The adsorption property of the imprinted polymers was studied by UV spectrophotometry and HPLC. The results indicated that the porogen solvent had a certain influence on the adsorption performance of the polymer. The vanillin‐imprinted polymer MIP1 prepared with MeOH as porogen, exhibited advantageous characteristics, i.e., a high binding activity, a good selectivity, and a rapid adsorption equilibrium. The binding parameters studied by Scatchard analysis established that there are two types of binding sites in MIP1. Finally, by packing an SPE column (SPE = solid‐phase extraction) with the polymer MIP1, the vanillin was separated and enriched successfully by this sorbent from the samples of Vanilla fragrans and beer.  相似文献   

8.
A novel 17β‐estradiol molecularly imprinted polymer was grafted onto the surface of initiator‐immobilized silica by surface‐initiated atom transfer radical polymerization. The resulting molecularly imprinted polymer was characterized by elemental analysis and thermogravimetric analysis. The binding property of molecularly imprinted polymer for 17β‐estradiol was also studied with both static and dynamic methods. The results showed that the molecularly imprinted polymer possessed excellent recognition capacity for 17β‐estradiol (180.65 mg/g at 298 K), and also exhibited outstanding selectivity for 17β‐estradiol over the other competitive compounds (such as testosterone and progesterone). Then, the determination of trace 17β‐estradiol in beef samples was successfully developed by using molecularly imprinted polymer solid‐phase extraction coupled with high‐performance liquid chromatography. The limit of detection was 0.25 ng/mL, and the amount of 17β‐estradiol in beef samples was detected at 2.83 ng/g. This work proposed a sensitive, rapid, reliable, and convenient approach for the determination of trace 17β‐estradiol in complicated beef samples.  相似文献   

9.
In this study, we developed a simple and selective spin column extraction technology utilizing hydrophilic molecularly imprinted polymers as the sorbents for extracting nitrophenol pollutants in water samples (the East Lake, the Yangtze River, and wastewater). The whole procedure was achieved by centrifugation of the spin column, and multiple samples were simultaneously processed with a low volume of solvent and without evaporation. Under the optimized condition, recoveries of nitrophenol compounds on the spin column packed with hydrophilic molecularly imprinted polymers ranged from 87.3 to 92.9% and an excellent purification effect was obtained. Compared with activated carbon, multi‐walled carbon nanotubes, LC‐C18 sorbents, hydrophilic molecularly imprinted polymers exhibited a highly selective recognition ability for nitrophenol compounds and satisfactory sample extraction efficiency. Subsequently, the spin column extraction coupled with high‐performance liquid chromatography was established, which was found to be linear in the range of 2–1000 ng/mL for 2,4‐dinitropehnol and 2‐nitrophenol, and 6–1000 ng/mL for 4‐nitrophenol with correlation coefficients greater than 0.998. The detection limits ranged from 0.3–0.5 ng/mL. It is shown that the proposed method can be used for the determination of trace nitrophenol pollutants in complex samples, which is not only beneficial for water quality analysis but also for environmental risk assessment.  相似文献   

10.
A simple and reliable method was developed to detect two basic synthetic dyes, rhodamine B (RB) and rhodamine 6G (R6G), in wastewater and surface water samples by high performance liquid chromatography with fluorescence detection (HPLC‐FLD). These dyes have been reported to be both mutagenic and carcinogenic in various organisms. The contents of these two dyes in water samples were extracted by Oasis HLB solid‐phase extraction (HLB‐SPE), and were then determined by an isocratic HPLC using an Atlantis® T3‐C18 column. Water samples at various pH conditions and the compositions of eluents for SPE were evaluated. The results indicate that the proposed method is precise and sensitive in analyzing these two basic synthetic dyes, and the limits of quantitation were 1.5 ng/L for RB and 0.3 ng/L for R6G in 100 mL of water samples. The recovery of analytes in spiked surface water and municipal wastewater treatment plant (WWTP) effluent samples ranged from 61 to 90% with the precision (RSD) ranging from 2 to 12%. The concentrations of analytes were detected in various water samples ranging from 0.7 to 81 ng/L.  相似文献   

11.
17β‐Estradiol (E2) surface molecularly imprinted polymers have been prepared using functionalized monodispersed poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) beads as a support. The resulting polymers were found to be uniform in size (5 μm), and the surfaces of the microspheres possessed large pore‐like structures. A chromatographic experiment demonstrated that the resulting microspheres exhibited high levels of recognition and selectivity toward the target molecule. The particles were employed as a novel sorbent in a molecularly imprinted SPE protocol. A method was then developed involving the combination of the pretreatment with HPLC to determine the levels of estrogen secreted from Michigan Cancer Foundation‐7 cells. The obtained results revealed that the extraction recoveries of E2 from real samples were in the range of 73.0–97.5% with RSDs of < 7.5% (n = 3). Calibration curves were established with R values > 0.9996 for concentrations in the range of 0.50–100.00 ng/mL. The LOD of this new method was 0.14 ng/mL. Compared with traditional C18 SPE agents, the particles showed high selectivity and extraction efficiency for E2 in the pretreatment process. The particles could therefore be used to determine trace estrogen in biological samples with a UV detector only.  相似文献   

12.
Hordenine is an active compound found in several foods, herbs and beer. In this work, a novel sorbent was fabricated for selective solid‐phase extraction (SPE) of hordenine in biological samples. The organic polymer sorbent was synthesized in one step in the plastic barrel of a syringe by a pre‐polymerization solution consisting of methacrylic acid (MAA), 4‐vinylphenylboronic acid (VB) and ethylene glycol dimethacrylate (EGDMA). The conditions for preparation were optimized to generate a poly(MAA‐VB‐EGMDA) monolith with good permeability. The monolith exhibited good enrichment efficiency towards hordenine. By using tyramine as the internal standard, a poly(MAA‐VB‐EGMDA)‐based SPE‐HPLC method was established for analysis of hordenine. Conditions for SPE, including volume of eluting solvent, pH of sample solution, sampling rate and sample volume, were optimized. The proposed SPE‐HPLC method presented good linearity (R2 = 0.9992) within 10–2000 ng/mL and the detection limits was 3 ng/mL, which is significantly more sensitive than reported methods. The method was also applied in plasma and urine samples; good capability of removing matrices was observed, while hordenine in low content was well extracted and enriched. The recoveries were from 90.6 to 94.7% and from 89.3 to 91.5% for the spiked plasma and urine samples, respectively, with the relative standard deviations <4.7%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Ochratoxin A (OTA) is a mycotoxin produced by some species of Aspergillus and Penicillium verrucosum. It has been found in foods and feed all over the world. There is a great concern about OTA because it is nephrotoxic and probably, carcinogenic to humans. Most of analytical methods developed for OTA in wine, beer and other products are based on LC with fluorescence detection (LC-FLD). In the present work, various procedures for extraction and/or clean-up for determination of OTA in musts, wine and beer by LC-FLD were compared: (1) dilution with polyethylen glycol 8000 and NaHCO3 solution and clean-up an on immunoaffinity column (IAC); (2) extraction with chloroform and IAC clean-up; solid-phase extraction (SPE) on (3) reversed-phase (RP) C18; (4) RP phenylsilane and (5) Oasis HLB cartridges. SPE on phenylsilane and Oasis HLB have not been reported for OTA analysis in beverages. The same LC-FLD conditions and concentration ratio were used. The former procedure was simple, rapid and provided flat baselines, free from most impurity peaks, high OTA recoveries and quite repeatable results. RP C18 using methanol-acetic acid (99.5:0.5) as elution solvent provided good recoveries and precision, thus becoming a cheaper but interesting alternative at 0.1-1 ng/ml spiking levels. Oasis HLB cartridges were usually better than phenylsilane. Possible binding of OTA to proteins or other components was tested by acid treatment before extraction but no significant differences with controls appeared.  相似文献   

14.
A total of 267 wine samples including 19 dessert, 186 red, 11 rosé and 51 white produced mostly in the years 1997–2002 in Italian and Hungarian regions were analyzed for ochratoxin A (OTA) using inmunoaffinity column (IAC) clean-up and HPLC with fluorimetric detection. None of Hungarian wine samples were contaminated with this mycotoxin. For Italian red wines, 84% of the samples were positive for OTA ranged from 0.01 to 4.00 ng/mL. Furthermore, OTA was detected in 63% of dessert, in 56% of rosé and in 19% of white wine samples ranged from 0.01 to 1.64, from 0.01 to 1.04 and from 0.01 to 0.21 ng/mL, respectively. A study of OTA daily exposure assessment in Italian wines was also carried out outlining a quite low contribution to the overall daily intake.  相似文献   

15.
The novel surface molecularly imprinted polymer (MIP) with 2‐nitrophenol (2‐NP) as the template has been prepared and used as the adsorbent for the solid‐phase extraction (SPE). The selectivity of the polymer was checked toward several selected nitrophenols (NPs) such as 2‐NP, 3‐nitrophenol (3‐NP), 4‐nitrophenol (4‐NP) and 2,4,6‐trichlorophenol (2,4,6‐TCP). Under the optimized conditions, high sensitivity (detection limits: 0.07–0.12 ng/mL) and good reproducibility of analytes (2.3–4.8% for four cycles) were achieved. Then, the method was applied for the analysis of selected phenols in spiked tap, lake and river water samples. High recoveries (>83.3%) for nitrophenols (NPs) were obtained, but lower recoveries (<63.4%) were achieved for 2,4,6‐TCP. The method was found to be linear in the range of 1–300 ng/mL with correlation coefficients (R2) greater than 0.99 and repeatability relative standard deviation (RSD) below 7.2% in all cases. For analysis of 120 mL water samples, the method detection limits (LODs) ranged from 0.10 to 0.22 ng/mL and the limit of quantification (LOQs) from 0.33 to 0.72 ng/mL. These results showed the suitability of the MIP‐SPE method for the selective extraction of a group of structurally related isomeric compounds.  相似文献   

16.
A molecularly imprinted polymer (MIP) was prepared using (?)‐norephedrine as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross‐linker and chloroform as the porogen. The MIP was used as a selective sorbent in the molecularly imprinted solid‐phase extraction (MIP‐SPE) of the psychoactive phenylpropylamino alkaloids, norephedrine and its analogs, cathinone and cathine, from Khat (Catha edulis Vahl. Endl.) leaf extracts prior to HPLC‐DAD analysis. The MIP was able to selectively extract the alkaloids from the aqueous extracts of Khat. Loading, washing and elution of the alkaloids bound to the MIP were evaluated under different conditions. The clean baseline of the Khat extract obtained after MIP‐SPE confirmed that a selective and efficient sample clean‐up was achieved. Good recoveries (90.0–107%) and precision (RSDs 2.3–3.2%) were obtained in the validation of the MIP‐SPE‐HPLC procedure. The content of the three alkaloids in Khat samples determined after treatment with MIP‐SPE and a commercial Isolute C18 (EC) SPE cartridge were in good agreement. These findings indicate that MIP‐SPE is a reliable method that can be used for sample pre‐treatment for the determination of Khat alkaloids in plant extracts or similar matrices and could be applicable in pharmaceutical, forensic and biomedical laboratories. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Automated online SPE‐HPLC‐MS was established for the determination of deca‐bromodiphenyl ether in human serum. The online SPE with large volume injection was utilized to enhance the sensitivity. Online SPE with dilution line greatly decreased matrices effect, which enabled serum samples to be injected directly into pre‐column. Washing line was designed for the system to solve the serious residual phenomenon and reduce the risk of sample wastage and contamination. Under the optimized conditions, the linear of the method was in the range 0.1–10 ng/mL with the LOD of 0.026 ng/mL. The recoveries of serum samples spiked with deca‐bromodiphenyl ether at 0.5 ng/mL was in the range from 83.30 to 102.7% with RSD in interday less than 8.67%. The satisfactory results demonstrated that the method of online sample pretreatment and cleanup recycle were reliable for human serum analysis.  相似文献   

18.
In the present paper, we describe a new on‐line SPE system where molecular imprinting, fiber‐optic detection and flow injection analysis were combined for the first time. This new system has been applied for the on line detection of 4‐nitrophenol (4‐NP). Initially, molecularly imprinted polymers (MIP) have been prepared for the selective extraction of 4‐NP using 4‐vinylpyridine and ethylene glycol dimethacrylate as functional and cross‐linking monomers, respectively. Selective extraction was achieved using the designed MIP with 97% of recovery on imprinted polymer and 10% on control polymer. The system provided a high degree of accuracy, with RSDs varying between 0.7 and 1.39%. In respect of accuracy, reproducibility, and rapidity, this system is comparable with HPLC. In short, the system allows simple, fast, and accurate analyte determination with the possibility of future automation.  相似文献   

19.
The proposed L ‐histidine sensing system composed of a molecularly imprinted solid‐phase microextraction component combined with a molecularly imprinted polymer sensor was used to determine critical levels of test analyte in a complex matrix of highly diluted human blood serum without any non‐specific sorption and false‐positive contributions. The molecularly imprinted polymer was a zwitterionic polymer brush derived from the disodium salt of EDTA and chloranil, grafted to solid‐phase microextraction material. The hyphenated approach was able to detect L ‐histidine quantitatively with a limit of detection as low as 0.0435 ng/mL (RSD = 0.2%, S/N = 3).  相似文献   

20.
A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid‐phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non‐imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non‐imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3–104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 μg/L, and the limit of quantitation was 2.3 μg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high‐performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号