首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With frontal analysis(FA),the dependence of adsorption isotherms of insulin on the composition of mobile phase in reversed phase liquid chromatography (RPLC) has been investigated,This is also a good example to employ the stoichiometric displacement theory (SDT) for ivestigating solute adsorption in physical chemistry.Six kinds of mobile phase in RPLC were employed to study the effects on the elution curves and adsorption isotherms of insulin.the key points of this paper are:(1) the stability of insulin due to delay time after preparing,the organic solvent concentration,the kind and the concentration of ion-pairing agent in mobile phase were found to affect both elution curve and adsorption isotherm very seriously.(2)To obtain a valid and comparable result,the composition of the mobile phase employed in FA must be as same as possible to that in usual RPLC of either analytical scale or preparative purpose.(3)Langmuir Equation and the SDT were employed to imitate these obtained adsorption isotherms.The expression for solute adsorption from solution of the SDT was found to have a better elucidation to the insulin adsorption from mobile phase in RPLC.  相似文献   

2.
With four kinds of mobile phases,methanol-water,ethanol-water,2-propanol and acetonitrile-water(all containing 0.1%rifluroacetic acid),the displacement between solute and solvent in RPLC was proved to be universal in frontal analysls(FA).Based on the measured Z value in usual RPLC to be a constant and the quantitative determination of methanol increment in mobile phase in FA,the stoichiometric displacement(SD)between insulin and methanol was directly proved by the experiment.The SD was also proved to occur only on about the one-fourth of the maximum amount of adsorbed methanol in the bonded phase layer(BPL)without any dynamic problem of mass transfer,while in FA,the SD firstly occurs on the surface of the BPL and then gradually sinks into the deeper sites companied with a dynamic problem.Although the displaces soplvent by the same solute is less in the former case,the SD is independent of how deep of the solute enters the BPL.In addition,the adsorbed amount of solute on and adsorbent not only depends on the numbers of the adsorbed layer on the adsorbent surface,but also on the extent of the complete removal of the displace able solvent in the BPL.The pyhsical fundamental of the SD and the methodoloby for investigation were also discussed.  相似文献   

3.
IntroductionFrontalchromatography (FC) ,anoldbranchinliquidchromatography (LC) ,1hasbeensuccessfullyem ployedinthesolutionofmanytheoreticalaswellasap pliedproblems—suchasmeasuringbindingconstantbe tweencomponents2 andkineticparametersofchemicalreactions ,3 ads…  相似文献   

4.
张养军  申烨华  张启东  耿信笃 《色谱》2000,18(6):487-490
 提出了以醋酸 水作为流动相的体系中 ,在ODS柱上分离生物大分子的反相高效液相色谱 (RPLC)方法。实验结果表明 ,醋酸 水的洗脱能力强于甲醇 水 三氟醋酸体系 ,在一定程度上克服了色谱分离中一些蛋白质的不可逆吸附且具有便于冷冻干燥的优点。用参数Z(1mol溶剂化溶质被溶剂化固定相吸附时从两者接触表面释放出置换剂的摩尔总数 ) ,logI(与 1mol溶质对固定相亲和势有关的常数 )和 j(与 1mol溶剂对固定相亲和势有关的常数 )对 9种蛋白质在此流动相体系中的保留进行了表征。  相似文献   

5.
王晓妮  张洁等 《中国化学》2003,21(3):311-319
With the combination of the the stoichiometric displacement model for retention (SDM-R) in reversed phase liquid chromatography (RPLC) and the stoichiometric displacement model for adsorption (SDM-A) in physical chemistry,the total number of moles of the re-solvated methanol of stationary phase side.nr,and that of solute side in the mobile phase,q,corresponding the one mole of the desorbing solute,were separately determined and referred as the characterization parameters of the contributions of the adsorption mechanism and partition mechanism to the solute retention,respectively.A chromatographic system of insulin,using mobile phase consisting of the pseudo-homologue of alcohols(methanol,ethanol and 2-propanol)-water and trifluoroacetic acid was employed.The maximum number of the methanol layers on the stationary phase surface was found to be 10.6,only 3 of which being valid in usual RPLC,traditionally referred as a volume process in partition mechanism.However,it still follows the SDM-R.Both of q and nr of insulin were found not to be zero,indicating that the retention mechanism of insulin is a mixed mode of partition mechanism and adsorption mechanism.When methanol is used as the organic modifier,the ratio of q/nr was 1.13,indicating the contribution to insulin retention due to partition mechanism being a bit greater than that due to adsorption mechanism.A linear relationship between q,or nr and the carbon number of the pseudo-homologue in the mobile phase was also found.As a methodology for investigating the retention mechanism retention and behavior of biopolymers.a homologue of organic solvents as the organic modifier in mobile phase has also been explored.  相似文献   

6.
在反相液相色谱(RPLC)中用Snyder经验议程和计量置换保留模型(SDM-R)中的参数对深质为脂肪醇同系物,流动相为脂肪酸同系物时深质的保留行为进行了研究,结果表明用SDM-R参数具有明显的优越性,另外,由于用Snyder经验公式中二参数之间的作园无法准确求得斜率,且其不具有明确的物理意义,而由SDM-R二参数作图,不但能准确求得斜率j(与1mol溶剂和固相结合能有关的常数),而且j具有明确的物理意义并符合碳数规律,所以,参数j有可能用于RPLC中表征深剂强度,由此得出,在RPLC中,对同一置换剂面言,随同系物溶质的Z(1mol深剂化深质被深剂化固定相吸附时,从二接解面释放出的置换剂分子数)和logI(与1mol深质和固定相亲和势有关的常数)值增大,它们的保留时间也增大,对同一深质而言,随着在同系物置换剂中碳链的增长,Z和logI值的减小,它的保留时间也缩短,同时还可得出,随着同系物置换剂j值的减小,它们的洗脱能力也增强.  相似文献   

7.
The chromatographic behavior (retention, elution strength, efficiency, peak asymmetry and selectivity) of some aromatic diamines in the presence of methanol with or without anionic surfactant SDS in the four different reversed phased liquid chromatographic (RPLC) modes, i.e., hydro-organic, micellar (MLC), low submicellar (LSC) and high submicellar (HSC), was investigated. In the three surfactant-mediated modes, the surfactant monomers coat the stationary phase even up to 70 % methanol; this results in the suppression of peak tailing (by masking the silanol groups on the stationary phase). In MLC and HSC, the solute retention decreases by increasing the surfactant concentration, while this situation was reversed in LSC. In the region between MLC and HSC modes (25–50 % methanol), retention of late eluting solutes was increased by increasing methanol content which is seemingly due to disaggregation of SDS micelles. Changes in selectivity were observed after changing the concentrations of SDS and methanol, in a greater extent when concentration of SDS was changed. Among the four studied RPLC modes, HSC showed the best efficiency with nearly symmetrical peaks. Prediction of retention of solutes in HSC based on a mechanistic retention model combined with Pareto-optimality method allowed the full resolution of target diamines in practical analysis times.  相似文献   

8.
耿信笃 《分析化学》1998,26(6):665-670
从理论上阐明了计量置换平衡常数的对数logKa对液相色谱中计量置换保留模型的线性参数logI起着主导作用。logI表示溶质对固定相的亲合势,且具有热力学平衡常数的性质。  相似文献   

9.
The influence of the average column pressure (ACP) on the elution volume of thiourea was measured on two RPLC columns, packed with Resolve-C18 (surface coverage 2.45 micromol/m2) and Symmetry-C18 (surface coverage 3.18 micromol/m2), and it was compared to that measured under the same conditions on an underivatized silica (Resolve). Five different methanol-water mixtures (20, 40, 60, 80 and 100% methanol, v/v) were used. Once corrected for the compressibility of the mobile phase, the data show that the elution volume of thiourea increases between 3 and 7% on the C18-bonded columns when the ACP increases from 50 to 350 bar, depending on the methanol content of the eluent. No such increase is observed on the underivatized Resolve silica column. This increase is too large to be ascribed to the compressibility of the stationary phase (silica + C18 bonded chains) which accounts for less than 5% of the variation of the retention factor. It is shown that the reason for this effect is of thermodynamic origin, the difference between the partial molar volume of the solute in the stationary and the mobile phase, Delta V, controlling the retention volume of thiourea. While Delta V is nearly constant for all mobile phase compositions on Resolve silica (with Delta V approximately equal to -4 mL/mol), on RPLC phases, it significantly increases with increasing methanol content, particularly above 60% methanol. It varies between -5 mL/mol and -17 mL/mol on Resolve-C18 and between -9 mL/mol and -25 mL/mol on Symmetry-C18. The difference in surface coverage between these two RP-HPLC stationary phases increases the values of Delta V by about 5 mL/mol.  相似文献   

10.
郭菲  王彦  王刃锋  阎超 《色谱》2008,26(1):15-21
建立了二维液相色谱-质谱联用方法分离中药复方葛根芩连汤的成分。以CN柱作第一维色谱柱,水和甲醇梯度洗脱分离;以ODS柱作第二维色谱柱,20 mmol/L乙酸铵缓冲液和乙腈梯度洗脱分离;质谱检测采用电喷雾电离/大气压化学电离(ESI/APCI)复合离子源,正负离子扫描。实验结果表明搭建的二维液相色谱的峰容量显著高于一维色谱,分离效率得到了明显的提高。以第一维色谱的第3个流分为例,对其二维分离进行仔细分析,发现质谱比紫外光谱检测到的组分多,质谱中采用负离子模式比正离子模式检测到的组分多。表明搭建的二维液相色谱-质谱分离平台分离效果好,提高了液相色谱的峰容量和分离效率。该方法操作简便,可作为中药等复杂体系分离分析的有效手段。  相似文献   

11.
A series of 11 homemade octadecyl bonded phases with different coverage densities were tested to determine the influence of the stationary phase on the retention in highly aqueous mobile phases. The concentrations of the organic modifiers (methanol and ACN) were in the range of 0–20%v/v. The coverage density of bonded ligands and the presence of the end‐capping have strong influence on the solute retention. Amoxicillin (AMO) was chosen as the test compound. Dual properties of AMO, which contain hydrophobic skeleton and polar groups (amino, hydroxyl and carbonyl), cause irregular changes of the retention over the stationary phase hydrophobicity and silanol activity at given mobile phase composition. Presented data show that application of non‐standard low coverage density C18 phases allow to determine AMO in the RPLC condition with high retention.  相似文献   

12.
Temperature was investigated as active parameter in the liquid chromatography (LC) analysis of octylphenol ethoxylates. Significant differences in selectivity were observed when the oligomers were analyzed by reversed phase LC (RPLC) on silica-, zirconia- and polystyrene/divinylbenzene based stationary phases at low (ambient), medium and elevated temperature with acetonitrile/water as mobile phase. As ascertained by LC-mass spectroscopy (MS), in most cases the elution order of the oligomers was completely reversed comparing ambient and high temperature separations. On a graphitized carbon type column, the selectivity remained unchanged, regardless the analysis temperature. Also in normal phase LC, the elution order remained unaffected by temperature variations both for acetonitrile/water and methanol/water mixtures as mobile phase. Surprisingly, when reversed phase LC on a octadecylsilicagel column at different temperatures was repeated with methanol instead of acetonitrile as mobile phase ingredient, the reversal of elution order did not take place. Results are evaluated in terms of thermodynamic parameters.  相似文献   

13.
Elution time shifts between 33 different peptides and their corresponding phosphopeptides ranging from 4 amino acid residues to 35 amino acids in length were systematically investigated using high-resolution reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) analysis with trifluoroacetic acid as the ion pairing agent. Observed peptide elution time shifts for a single phosphorylation ranged from -5.28 min (for pYVPML) to +0.59 min (for HRDpSGLLDSLGR). Peptides containing a phosphotyrosine residue displayed a significant decrease in elution time following phosphorylation compared to their similar-sized peptides with phosphoserine or phosphothreonine residues. While peptide phosphorylation generally led to a decrease in the observed elution time, five peptides displayed increased elution times as a result of phosphorylation. For large peptides (> or =18 amino acids), the elution time shifts due to single phosphorylation were limited (ranging between -0.48 and +0.03 min), while the elution time shifts for small peptides (<18 amino acids) were characterized by a larger deviation (ranging between -5.28 and +0.59 min). The predictive capability for the observed RPLC elution time change due to phosphorylation has been suggested, which will aid in assigning confident phosphopeptide identifications and their subsequent confirmation.  相似文献   

14.
In the present work, we study the effect of mobile phase anionic additive type and concentration on the selectivity, efficiency, and sample loading capacity of cationic drugs in reversed-phase liquid chromatography (RPLC). The type and concentration of an anionic additive are known to have a strong effect on the absolute retention of cations in RPLC; in contrast they have only a small effect on the selectivity of one cation relative to a second as seen here. This is mainly due to the similarity of the ion pair formation constants between the selected cations. The limiting retention factors of cations (i.e. the retention factor of the fully ion-paired analyte at very high additive concentration) are roughly proportional to their inherent hydrophobicities (i.e. the retention factor of the analyte in the absence of the anionic additive). With a given anion, differences in ion pairing strength between the solutes are required for effective selectivity adjustment. Based on the Wade–Lucy–Carr (W–L–C) kinetic model of overload peaks, the approach we developed in our previous work was used to study the effect of mobile phase anionic additives type and concentration on the limiting plate count (N0) and sample loading capacity (ω0.5) of various cationic drugs. Under linear chromatographic conditions, where the analyte exhibits its smallest peak width and thus maximum apparent plate count, the type and concentration of anionic additives have almost no effect on peak width. In comparison to neutral analytes the sorption isotherms of cationic species are very easily overloaded even when many fewer moles of cations as compared to neutrals are injected. We showed that different anionic additives profoundly affect the cations’ “overload profiles” (i.e. plots of plate count versus amount injected) by changing the sample loading capacities. The increase in sample loading capacities with different anions show the same order as the extent of ion pairing between the anions and the basic analytes. The detrimental effect of sample overloading on peak width can be greatly diminished by using either a stronger ion pairing agent or a higher concentration of a given ion pairing agent. Both effects operate by increasing the sample loading capacity, thereby allowing more solute to be injected. We believe that the increase in sample loading capacity described above is due in part to the increase in the number of ion-exchange sites as more anions sorb to the stationary phase. At the same time, the formation of a neutral ion-paired analyte also increases the amount of cation which can be loaded onto the stationary phase by allowing a greater fraction of the analyte to be present in the stationary phase as an electrically neutral (i.e. ion-paired) species.  相似文献   

15.
脲衍生物型手性固定相拆分噻利洛尔对映体   总被引:4,自引:0,他引:4  
邹晓蓉  云自厚 《色谱》1998,16(5):420-423
用脲衍生物型手性固定相直接拆分了药物对映体噻利洛尔。优化的正相色谱流动相的组成为正己烷/1,2-二氯乙烷/乙醇(77∶21∶2,V/V/V)。实验表明,流动相中乙醇含量的改变对分离度产生了较大的影响;不同极性调节剂的使用表现出了不同的拆分效果。最后讨论了异构体的出峰次序,认为异构体与固定相的手性中心之一的氢键作用力是造成异构体分离的主要因素。  相似文献   

16.
17.
The chiral recognition mechanism for a series of d,l phenoxypropionic acid herbicides (PPAs) on a teicoplanin stationary phase was investigated in reversed phase liquid chromatography (RPLC) over a wide range of mobile phase pH and column temperature. The effect of methanol on the enantiomeric separation was studied by varying its fraction (v/v) in the mobile phase. The thermodynamic data indicated that the chiral recognition was controlled by the interaction between the anionic form of the solute and the teicoplanin phase while those with the neutral form played a minor role. In addition, it was demonstrated that the enhancement of the separation factor observed as the methanol fraction increased in the mobile phase was enthalpically controlled owing to stereoselective binding interactions. Such behavior was used to optimize the chromatographic conditions for separation of PPAs herbicides on teicoplanin.  相似文献   

18.
The elution mechanism of sodium sulfonates on both Deltabond cyanopropyl and bare silica stationary phases with an isocratic mobile phase composed of methanol-modified CO2 wherein an ammonium salt additive was dissolved in the methanol has been studied. The presence of the additive was crucial concerning elution of the sulfonate salts. Solid state 29silicon nuclear magnetic resonance spectroscopy provided some insight concerning the interaction of the mobile phase additive with the silica-based stationary phase. Computational calculations concerning the charge distribution on various ammonium salts were performed in an effort to explain the elution behavior. Ammonium ions are believed to deactivate available silanol sites on both phases. In addition, ammonium ion is speculated to interact with the cyano groups on the bonded phase. For concentrations of additive greater than 2 mM, stationary phase coverage of ammonium ion is anticipated to exceed one monolayer for both bare and bonded silica. The acetate counter-ion is thought to facilitate elution of the anionic sulfonates from the positively charged stationary phase in a pseudo ion exchange mechanism.  相似文献   

19.
Comprehensive two-dimensional (2D) HPLC in the reversed-phase liquid chromatography (RPLC) mode using C18 silica monolith columns at first dimension (1st-D) (10 cm x 4.6mm I.D.) and second dimension (2nd-D) (5 cm x 4.6mm I.D.) was carried out successfully. A mixture of water and tetrahydrofuran (THF) was used as a mobile phase in the 1st-D separation, and a mixture of water and methanol (CH3OH) in the 2nd-D separation. Sample fractions from 1st-D column were directly loaded into an injection loop of the 2nd-D HPLC equipped with two injector valves for one column. The fractionation time at the 1st-D that was equal to the separation time at the 2nd-D was 45 or 60s. Total peak capacity up to 900 was obtained in about 60 min for the isocratic mode separation of aromatic compounds in this system. Gradient elution mode applied to both 1st-D and 2nd-D separations resulted in shorter separation time and better separation efficiencies than the isocratic mode. It was demonstrated that 2D-HPLC systems employing popular C18 stationary phases with different organic modifiers in mobile phases for each dimension could produce large peak capacity. The different selectivities were provided by the difference in polar interactions between a solute and the organic modifier existing in the stationary phase.  相似文献   

20.
Dihydrostreptomycin sulphate (DHS) is a water‐soluble, broad‐spectrum aminoglycoside antibiotic. For quantitative analysis, the European Pharmacopoeia (Ph. Eur.) prescribes an ion‐pairing liquid chromatography/ultraviolet (LC/UV) method using a C18 stationary phase. Several unknown compounds were detected in commercial samples. Hence, for characterization of these unknown peaks in a commercial DHS sample, the Ph. Eur. method was coupled to mass spectrometry (MS). However, since the Ph. Eur. method uses a non‐volatile mobile phase, each peak eluted was collected and desalted before introduction into the mass spectrometer. The desalting procedure was applied to remove the non volatile salt, buffer and ion‐pairing reagent in the collected fraction. In total, 20 impurities were studied and 14 of them were newly characterized. Five impurities which are already reported in the literature were also traced in this LC/UV method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号