首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keggin杂多酸负载型催化剂研究及在有机合成中的应用   总被引:6,自引:0,他引:6  
评述了负载型杂多酸Keggin结构催化剂的制备、表征及其表面作用机理, 阐述了在非均相催化酯化反应、Friedel-Crafts烷基化和酰基化反应、选择氧化、不对称催化反应、异构化反应、缩合反应、裂解反应、水合反应、脱水反应、水解反应、重排反应、Diels-Alder反应及醚化反应等作为探针反应的催化性能, 总结了重排反应、醇氧化等不同类型催化反应的反应机理和催化剂失活的主要原因以及影响负载型催化剂水热稳定性能的因素, 指出了负载型杂多酸Keggin结构催化剂研究中有待解决的问题及今后的发展方向..  相似文献   

2.
纳米碳管负载金属镍催化叶绿素加氢反应   总被引:2,自引:0,他引:2  
用等体积浸渍法制备了纳米碳管负载金属镍催化剂,采用电镜(TEM)、红外光谱(IR)对催化剂的形貌、结构进行了表征.并考察了常温常压下不同Ni负载量的催化剂对叶绿素加氢反应的性能.结果表明,纳米碳管负载镍催化剂在催化反应过程中保持高分散态,不会发生团聚.而经过硝酸氧化后的纳米碳管负载镍催化剂在催化反应中表现出高的活性.当Ni负载量为7%时,催化活性最好,叶绿素分子开环生成各种小分子.  相似文献   

3.
董大飞  肖如亭 《应用化学》2010,27(4):437-440
用浸渍法制备了一系列以TiO2为载体的负载型催化剂,利用XRD和IR分析测试技术研究了负载Co2+与Cu2+后催化剂的表面结构,催化剂用于对甲酚氧化制备对羟基苯甲醛的反应中。 结果表明,n(Co2+)∶n(Cu2+)=1∶0.5时,催化剂的催化效果最佳。 在反应优化条件下,对甲酚的转化率可达100%,对羟基苯甲醛的选择性达95.2%。  相似文献   

4.
石油在作为燃料使用过程中常常产生各种污染,特别是油品中的含硫化合物不仅会降低油品品质,而且燃烧后产生的硫氧化物可污染大气,形成酸雨,危害人类健康.因此,油品深度脱硫是一项十分重要而紧迫的工作.
  目前油品脱硫方法有很多种,主要分为加氢脱硫与非加氢脱硫.加氢脱硫反应条件苛刻,脱硫效率低,对设备要求高,因而非加氢脱硫正在被广泛研究.其中氧化脱硫反应条件温和,脱硫效率高,对设备要求不高,有望实现规模化应用.在氧化脱硫反应中,催化剂是研究重点,尤其是催化剂效率及可回收能力.本课题组合成的亚硒核过氧钨酸盐是一种具有高选择性和高催化活性的催化剂,但它在反应后无法实现回收再利用,从而限制了其广泛应用.为了提高该催化剂的可回收能力,本文尝试制备负载型亚硒核过氧钨酸盐用于氧化脱硫反应中,考察其催化效率及可回收能力.
  分子筛具有孔结构,比表面积大且较为稳定,是理想的催化剂载体.本文采用浸渍法制备了MCM-41分子筛负载的亚硒核过氧钨酸盐,为了提高负载能力,减少催化剂溶脱,还制备了MCM-41-NH2分子筛负载的亚硒核过氧钨酸盐,并运用红外光谱、X射线衍射、N2吸附-脱附和透射电镜对它们进行了表征.结果显示,亚硒核过氧钨酸盐在MCM-41和MCM-41-NH2分子筛内分散均匀,表明负载成功.将负载型亚硒核过氧钨酸盐催化剂用于模拟油样二苯并噻吩(DBT)氧化脱硫实验,并用气相-火焰光度检测仪跟踪实验.结果表明,负载型和非负载型催化剂均具有较高的催化性能.模拟油样在负载型催化剂作用下氧化脱硫反应2 h后, DBT转化率达98.7%,实现了深度脱硫.此外,还优化了反应时间、反应温度及氧化剂和催化剂用量.与其它催化剂相比,在相似脱硫效率情况下,负载型催化剂的催化效率更高,反应条件更加温和,催化剂用量更少,因而更加环保和节能.对反应产物进行了红外光谱、气相-质谱联用分析以及气相色谱保留时间对比分析,结果表明DBT脱硫反应产物为DBTO2.结合相关文献,对该催化剂上DBT氧化脱硫提出了一种可能的催化氧化反应机理.
  反应后将负载型催化剂回收过滤,洗涤和干燥后,进行下一轮氧化脱硫反应.结果表明, MCM-41分子筛负载的亚硒核过氧钨酸盐在循环使用过程中, DBT转化率下降较快,循环使用4次后, DBT转化率降至80%,而MCM-41-NH2分子筛负载的催化剂在循环使用4次后, DBT转化率仍达90%.这表明MCM-41-NH2分子筛负载的亚硒核过氧钨酸盐催化剂具有更好的稳定性和回收使用性能.
  综上所述,负载型亚硒核过氧钨酸盐是一种高效的氧化脱硫催化剂,在较为温和的反应条件下即可实现深度催化氧化脱硫,其循环使用性能也得到明显提高.本结果可为该催化剂未来在工业上广泛应用提供一定参考.  相似文献   

5.
制备了一种新型Ni掺杂多层纳米结构牡丹花状CeO2材料,研究了其催化性能,同时与Ni负载牡丹花状CeO2样品进行了比较.结果表明,Ni掺杂CeO2样品具有纳米晶粒和开放的介孔结构,特殊的形貌使其在CO氧化和甲烷部分氧化反应中具有独特的催化特性.Ni掺杂后,CeO2中产生了多余氧空位,同时其氧化还原活性也增强,其在CO氧化反应中的催化活性明显高于纯CeO2和Ni负载CeO2样品;在甲烷部分氧化反应中,牡丹花状CeO2负载3atm%Ni催化剂样品上甲烷转化率高于所有Ni掺杂的催化剂样品.但是在Ni负载型催化剂和花状CeO2催化剂上,甲烷的起始转化温度为400oC,而5.7atm%Ni的掺杂使其降至340oC.  相似文献   

6.
石油在作为燃料使用过程中常常产生各种污染,特别是油品中的含硫化合物不仅会降低油品品质,而且燃烧后产生的硫氧化物可污染大气,形成酸雨,危害人类健康.因此,油品深度脱硫是一项十分重要而紧迫的工作.目前油品脱硫方法有很多种,主要分为加氢脱硫与非加氢脱硫.加氢脱硫反应条件苛刻,脱硫效率低,对设备要求高,因而非加氢脱硫正在被广泛研究.其中氧化脱硫反应条件温和,脱硫效率高,对设备要求不高,有望实现规模化应用.在氧化脱硫反应中,催化剂是研究重点,尤其是催化剂效率及可回收能力.本课题组合成的亚硒核过氧钨酸盐是一种具有高选择性和高催化活性的催化剂,但它在反应后无法实现回收再利用,从而限制了其广泛应用.为了提高该催化剂的可回收能力,本文尝试制备负载型亚硒核过氧钨酸盐用于氧化脱硫反应中,考察其催化效率及可回收能力.分子筛具有孔结构,比表面积大且较为稳定,是理想的催化剂载体.本文采用浸渍法制备了MCM-41分子筛负载的亚硒核过氧钨酸盐,为了提高负载能力,减少催化剂溶脱,还制备了MCM-41-NH2分子筛负载的亚硒核过氧钨酸盐,并运用红外光谱、X射线衍射、N2吸附-脱附和透射电镜对它们进行了表征.结果显示,亚硒核过氧钨酸盐在MCM-41和MCM-41-NH2分子筛内分散均匀,表明负载成功.将负载型亚硒核过氧钨酸盐催化剂用于模拟油样二苯并噻吩(DBT)氧化脱硫实验,并用气相-火焰光度检测仪跟踪实验.结果表明,负载型和非负载型催化剂均具有较高的催化性能.模拟油样在负载型催化剂作用下氧化脱硫反应2 h后,DBT转化率达98.7%,实现了深度脱硫.此外,还优化了反应时间、反应温度及氧化剂和催化剂用量.与其它催化剂相比,在相似脱硫效率情况下,负载型催化剂的催化效率更高,反应条件更加温和,催化剂用量更少,因而更加环保和节能.对反应产物进行了红外光谱、气相-质谱联用分析以及气相色谱保留时间对比分析,结果表明DBT脱硫反应产物为DBTO2.结合相关文献,对该催化剂上DBT氧化脱硫提出了一种可能的催化氧化反应机理.反应后将负载型催化剂回收过滤,洗涤和干燥后,进行下一轮氧化脱硫反应.结果表明,MCM-41分子筛负载的亚硒核过氧钨酸盐在循环使用过程中,DBT转化率下降较快,循环使用4次后,DBT转化率降至80%,而MCM-41-NH2分子筛负载的催化剂在循环使用4次后,DBT转化率仍达90%.这表明MCM-41-NH2分子筛负载的亚硒核过氧钨酸盐催化剂具有更好的稳定性和回收使用性能.综上所述,负载型亚硒核过氧钨酸盐是一种高效的氧化脱硫催化剂,在较为温和的反应条件下即可实现深度催化氧化脱硫,其循环使用性能也得到明显提高.本结果可为该催化剂未来在工业上广泛应用提供一定参考.  相似文献   

7.
纳米二氧化钛催化苯乙烯环氧化反应研究(Ⅱ)   总被引:5,自引:0,他引:5  
纳米材料的制备及催化研究日益受到人们的注意 [1~ 7] .前文 [8] 报道了负载异丙醇纳米二氧化钛催化苯乙烯环氧化反应 ,发现其具有一定的催化活性和较好的环氧化选择性 ,而负载乙醇 -丁醇纳米Ti O2 的选择性稍差 ,说明催化剂表面物种对催化反应有一定影响 ,故引起了我们进一步研究负载丁醇、辛醇及水合二氧化钛催化剂及溶剂对催化反应的影响的兴趣。本文将对这方面的工作进行报道 .1 实验部分1 .1 仪器及测定方法 催化剂合成在 1 0 0 m L不锈钢高压反应釜中进行 ,用 ZRY- 1型综合热分析仪进行 TG- DTA分析 (α- Al2 O3 为参比样 )…  相似文献   

8.
研究了负载化金属卟啉催化烯烃环氧化反应的催化活性,探索了催化反应体系中轴向配体、溶剂、锰卟啉在高分子上的担载量及反应温度等对催化反应的影响.结果表明,金属卟啉负载化后,增大了催化剂的稳定性.本文还考察了负载化催化剂对苯乙烯催化环氧化反应的动力学行为,根据Michaelis-Menten方程,求得了相关的动力学参数  相似文献   

9.
碳纳米管的独特性质,特别是其一维有序的管腔结构所形成的限域环境在催化反应中的应用引起了广泛的兴趣.已有将常规的液相氢化反应和气相反应限域于碳纳米管内的研究报道,并且大多数的研究结果显示限域于碳纳米管内的反应活性和/或选择性有明显提高,但多数研究没有对此给出清晰的解释.金鸡纳碱修饰的Pt催化剂催化的α-酮酸酯不对称氢化体系被认为是多相不对称催化领域发展的里程碑.早期的研究是简单的将碳纳米管作为Pt催化剂的载体用于α-酮酸酯不对称氢化反应,取得了中等的活性和对映体选择性.我们研究组发展了一种催化剂制备方法,可选择性的将Pt纳米粒子限域于碳纳米管管腔内或担载在碳纳米管管外,并将所制备的碳纳米管Pt催化剂应用于α-酮酸酯多相不对称催化反应中,发现封装于管腔内的管内型Pt纳米粒子的催化性能显著高于负载在管腔外壁的管外型Pt纳米粒子的催化性能.然而,对于管内型Pt催化剂催化性能增强的原因并不清楚.CO化学吸附和高分辨投射电镜(HRTEM)的表征结果表明管腔内外的Pt纳米粒子的大小和形貌没有明显区别.本论文在上述研究基础上,采用X射线光电子能谱(XPS),氢气程序升温脱附(H2-TPD),紫外可见光谱(UV-Vis)等表征手段研究了Pt纳米粒子担载于碳纳米管内和管外形成的催化剂在α-酮酸酯的不对称氢化反应中催化性能差异的原因.XPS测试结果表明,管内型和管外型Pt催化剂的载体的碳物种分布没有显出差异,但催化活性中心Pt纳米粒子的Pt物种组成不同.经225 oC H2还原后管外型Pt催化剂不存在高氧化态的Pt物种,而管内型Pt催化剂在400 oC H2还原仍然具有7%的高氧化态Pt物种.相应的催化反应结果表明,具有这种稳定的高氧化态Pt物种有利于获得高对映体选择性.参比催化剂商业化的Pt/AC和Pt/Al2O3的XPS测试结果也表明,对映体选择性高的Pt/Al2O3催化剂具有较高含量的高氧化态Pt物种.同时我们发现高氧化态Pt物种有利于催化剂对手性修饰剂和反应底物的吸附.虽然文献中一般认为Pt0是该反应的活性中心,但我们认为这些高氧化态的Pt物种有利于纳米粒子和手性修饰剂之间的相互作用,从而提高反应的对映选择性.我们进一步研究了表明高氧化态的Pt物种能存在于碳纳米管管腔内的原因.发现在催化剂制备过程中所使用的还原剂甲酸钠中残留的钠离子能稳定碳纳米管管腔内高氧化态Pt物种.我们采用H2直接还原制备了不含钠离子的参比管内型Pt催化剂.该参比催化剂的对映体选择性与管外型Pt催化剂相当,明显低于管内型Pt催化剂.同时该参比催化剂对手性修饰剂和底物的吸附能力弱于管内型Pt催化剂.以上结果清晰的表明了碳纳米管内由钠离子稳定的高氧化态Pt物种在α-酮酸酯多相不对称催化反应中的重要作用.然而,我们发现高氧化态Pt+物种含量的差异并不能很好的解释管内型和管外型Pt催化剂反应活性的差异.H2-TPD的结果表明相比于管外型Pt纳米粒子催化剂,管内型Pt纳米粒子具有更高的活化氢分子的能力,相应的催化反应结果表明,管外型Pt催化剂的反应活性随H2压力的降低而显著降低,而管内型Pt催化剂在0.1 MPa H2条件下仍然具有较高活性.简单的动力学模拟结果表明,在0.1 MPa H2条件下,碳纳米管管腔能显著富集H2.  相似文献   

10.
金属催化剂在工业、环境、能源以及生物等过程具有重要的应用.设计具有特定活性、环境友好型以及室温下具有反应活性的催化剂,需要在分子水平对金属催化剂的基元步骤,活性位点的结构以及催化反应微观机理有充分的认识.然而,由于宏观催化剂表面结构异常复杂,催化反应常受到溶剂、压力、金属颗粒团聚、催化剂表面缺陷等因素的干扰,利用现有实验仪器,从微观角度探索金属催化反应机理仍具有较大挑战,因此,对金属催化剂活性位的结构以及反应微观机理的认识还不十分清楚.质谱方法结合现代量子化学理论计算,提供了在气相条件下实验探索化学反应微观机理的有力工具,团簇反应可在隔离外界条件、可控以及可重复条件下进行,可以排除一些难以控制因素的干扰,可在化学键和分子结构水平认识金属活性位的结构以及催化反应的微观机理.气相金属团簇离子可用多种实验方法制备,与反应物分子反应后可利用多种质谱仪器探测,根据实验上所得的具有反应活性的团簇,结合现代量子化学理论模拟,得到金属催化反应的基元步骤以及微观反应机理信息,所得反应机理信息为宏观催化剂的设计提供重要理论研究基础.本综述总结了团簇实验上已经探测到的金属单原子离子、金属团簇、金属氧化物团簇和金属化合物催化的气相反应.反应物分子囊括了大量的无机和有机分子,包括CO,H2,CH4,C2H2,C2H4,C6H6,CH3OH,HCOOH,CH3COOH等.本综述主要介绍了以下三类催化反应:(1)CO催化氧化;(2)CH4催化转化;(3)催化脱羧反应,并重点关注贵金属单原子掺杂团簇独特的催化反应性.单原子催化剂可最大限度地利用有限的贵金属.在化学反应方面,单原子催化剂具有特异的反应活性,选择性以及稳定性.本综述对气相团簇反应中报道的两个重要的贵金属单原子掺杂团簇的催化反应进行了详细介绍:(1)金原子掺杂的AuAl3O3-5+团簇为首次报道的可以利用分子氧催化氧化CO的团簇单原子催化剂,我们对Au原子起催化作用的本质原因进行了介绍:(2)铂原子掺杂的PtAl3O5-7-团簇能利用分子氧催化氧化CO,该研究提出了"电负性阶梯"效应来解释Pt原子催化的微观机理,且此效应有望对大部分贵金属适用.此外,本综述对CO催化氧化反应和CH4催化转化反应的研究现状以及尚未解决的问题进行了剖析.相比CO的催化氧化反应,科学家对CH4催化转化反应机理的认识还不够深入,还需要进一步实验研究,而团簇单原子催化剂有望在此领域有所突破.  相似文献   

11.
负载型纳米催化剂表面结构与其催化性能之间关系的研究一直受到广泛关注.由于其结构复杂使得人们在研究催化剂构效关系时遇到了很多困难.近年来,大量研究发现反转催化剂在众多反应中表现出优越的催化性能.反转催化剂是将过渡金属氧化物负载于其它金属表面.和传统金属/氧化物催化剂相比,反转催化剂更能突出氧化物在催化反应中的重要作用.众多研究表明,在氧化物-金属界面处存在特殊的作用,这种作用可以改变氧化物的电子特性和化学性质,进而产生较高的催化性能.傅强等人创建了金属氧化物负载于Pt表面的反转催化体系,其表现出了高的低温CO氧化反应性能.在氧化物和Pt之间的界面限域效应可以稳定氧化物中配位不饱和的金属阳离子.这种配位不饱和的氧化物提供了活化O2的活性位.目前,反转催化剂的研究主要集中在单晶模型体系中,在负载型催化剂中的研究还较少.我们以炭黑(CB)为载体,将还原后的Pt-Fe和Pt-Co催化剂经过酸洗制备了一种表面富Pt核为合金的结构.考察了酸洗后的Pt-Fe和Pt-Co催化剂经过不同温度氧化后的结构变化,并讨论了其结构与CO完全氧化反应(COOX)和CO选择氧化反应(CO-PROX)性能的关系.X射线粉末衍射(XRD),电感耦合等离子体发射光谱(ICP),透射电镜(TEM)和X射线光电子能谱(XPS)表征结果表明,还原后的Pt基催化剂经过酸洗可以选择性去除纳米粒子表面的3d过渡金属,形成表面富Pt体相为合金的结构.将酸洗后的Pt-Fe和Pt-Co催化剂在不同温度下空气中氧化,发现近表层的Fe(Co)会扩散到粒子表面上,形成过度氧化的Fe2O3(Co3O4)表面结构.氧化后的催化剂在COOX和CO-PROX反应中表现出截然不同的催化性能.酸洗后的Pt-Fe(Pt-Co)催化剂经过不同温度氧化后在COOX反应中活性都较差,室温下的CO转化率只有不到30%,CO完全转化的温度超过100oC,相当于纯Pt催化剂的活性.这说明Pt表面过度氧化的Fe2O3(Co3O4)对CO氧化反应的促进作用不明显.而氧化后的催化剂在CO-PROX反应中表现出较高的活性,250oC(或350oC)氧化后的酸洗Pt-Fe催化剂室温下的CO转化率接近100%,250oC(或350oC)氧化后的酸洗Pt-Co催化剂室温下的CO转化率也达到了70%.结合表征和反应结果,我们认为氧化处理形成的表面过度氧化的金属氧化物(Fe2O3,Co3O4)在COOX的催化性能较差.通入CO-PROX反应气后,气氛中大量H2的存在和Pt表面的氢溢流效应可以使得表面Fe2O3,Co3O4在室温下被还原成配位不饱和的FeO,CoO.这种配位不饱和的氧化物在表面Pt的限域作用和大量H2气氛下比较稳定,并且具有较强的活化解离O2的能力,进而提高了CO-PROX反应的活性.为了进一步证实催化剂表面氧化物与其催化性能的关系,我们在室温下进行了两种反应气的循环实验测试.测试结果表明,对于氧化后的酸洗Pt-Fe催化剂,COOX反应中的表面Fe2O3和CO-PROX反应中的表面FeO可以通过变换反应气氛实现两种氧化物的相互转变,并表现出完全不同的催化性能.对于氧化后的酸洗Pt-Co催化剂,CO-PROX反应中形成的CoO表面结构在COOX反应中也比较稳定,在两种反应气中表现出相似的催化性能.  相似文献   

12.
由于高的比表面积、可调的孔隙结构以及易于修饰的表面化学性质,纳米碳材料作为催化剂和催化剂载体(碳基催化剂)被广泛地应用于多相催化领域.新型的金属和氮共修饰的碳材料(M-N-C)作为非均相催化剂在许多反应(如加氢/氢转移、加氢脱氧、氧化反应)中表现出了优异的催化性能.从结构上讲, M-N-C催化剂可以分为负载型催化剂(M/CN)、金属单原子分散型催化剂(M_(SAC)/CN)和包覆型催化剂(M@CN).本文围绕本课题组近些年取得的研究进展,重点介绍了M@CN催化剂的结构、性质、制备方法及其在催化反应(包括加氢、氢转移、氧化)中的应用,为从分子层面设计新型的非均相催化剂提供了思路借鉴,并对未来的研究方向和发展趋势进行了展望.  相似文献   

13.
正近年来,负载型金催化剂已广泛应用于催化各类氧化反应,如CO氧化[1-2]、水煤气转换反应[3-4]、醇醛的选择性氧化[5-7]、过氧化氢合成[8]、挥发性有机物催化燃烧等[9].同时,负载型金属催化剂(Pt、Pd)已应用于催化葡萄糖氧化制备葡萄糖酸盐,但在催化反应过程中易发生催化剂钝  相似文献   

14.
负载型纳米催化剂表面结构与其催化性能之间关系的研究一直受到广泛关注.由于其结构复杂使得人们在研究催化剂构效关系时遇到了很多困难.近年来,大量研究发现反转催化剂在众多反应中表现出优越的催化性能.反转催化剂是将过渡金属氧化物负载于其它金属表面.和传统金属/氧化物催化剂相比,反转催化剂更能突出氧化物在催化反应中的重要作用.众多研究表明,在氧化物-金属界面处存在特殊的作用,这种作用可以改变氧化物的电子特性和化学性质,进而产生较高的催化性能.傅强等人创建了金属氧化物负载于Pt表面的反转催化体系,其表现出了高的低温CO氧化反应性能.在氧化物和Pt之间的界面限域效应可以稳定氧化物中配位不饱和的金属阳离子.这种配位不饱和的氧化物提供了活化O_2的活性位.目前,反转催化剂的研究主要集中在单晶模型体系中,在负载型催化剂中的研究还较少.我们以炭黑(CB)为载体,将还原后的Pt-Fe和Pt-Co催化剂经过酸洗制备了一种表面富Pt核为合金的结构.考察了酸洗后的Pt-Fe和Pt-Co催化剂经过不同温度氧化后的结构变化,并讨论了其结构与CO完全氧化反应(COOX)和CO选择氧化反应(CO-PROX)性能的关系.X射线粉末衍射(XRD),电感耦合等离子体发射光谱(ICP),透射电镜(TEM)和X射线光电子能谱(XPS)表征结果表明,还原后的Pt基催化剂经过酸洗可以选择性去除纳米粒子表面的3d过渡金属,形成表面富Pt体相为合金的结构.将酸洗后的Pt-Fe和Pt-Co催化剂在不同温度下空气中氧化,发现近表层的Fe(Co)会扩散到粒子表面上,形成过度氧化的Fe_2O_3(Co_3O_4)表面结构.氧化后的催化剂在COOX和CO-PROX反应中表现出截然不同的催化性能.酸洗后的Pt-Fe(Pt-Co)催化剂经过不同温度氧化后在COOX反应中活性都较差,室温下的CO转化率只有不到30%,CO完全转化的温度超过100 ℃,相当于纯Pt催化剂的活性.这说明Pt表面过度氧化的Fe_2O_3(Co_3O_4)对CO氧化反应的促进作用不明显.而氧化后的催化剂在CO-PROX反应中表现出较高的活性,250 ℃(或350 ℃)氧化后的酸洗Pt-Fe催化剂室温下的CO转化率接近100%,250 ℃(或350 ℃)氧化后的酸洗Pt-Co催化剂室温下的CO转化率也达到了70%.结合表征和反应结果,我们认为氧化处理形成的表面过度氧化的金属氧化物(Fe_2O_3,Co_3O_4)在COOX的催化性能较差.通入CO-PROX反应气后,气氛中大量H_2的存在和Pt表面的氢溢流效应可以使得表面Fe_2O_3,Co_3O_4在室温下被还原成配位不饱和的FeO,CoO.这种配位不饱和的氧化物在表面Pt的限域作用和大量H_2气氛下比较稳定,并且具有较强的活化解离O_2的能力,进而提高了CO-PROX反应的活性.为了进一步证实催化剂表面氧化物与其催化性能的关系,我们在室温下进行了两种反应气的循环实验测试.测试结果表明,对于氧化后的酸洗Pt-Fe催化剂,COOX反应中的表面Fe_2O_3和CO-PROX反应中的表面FeO可以通过变换反应气氛实现两种氧化物的相互转变,并表现出完全不同的催化性能.对于氧化后的酸洗Pt-Co催化剂,CO-PROX反应中形成的CoO表面结构在COOX反应中也比较稳定,在两种反应气中表现出相似的催化性能.  相似文献   

15.
木质素是自然界中储量丰富的唯一含芳环生物质可再生资源,但复杂的结构使其难以高效利用,目前大部分被废弃。除通过氧化还原等过程可将其转化为石油化工产品的替代品外,木质素结构中丰富的含氧官能团及制浆过程引入的硫元素等均可提供有效位点,为其作为催化剂基质提供了丰富的可行性。本文从木质素资源的来源和结构分析出发,根据不同催化反应的机理和制备催化剂过程中的结构改性类型,综述了具有不同结构特征的木质素基催化剂分别在生物质平台化合物水解等酸碱催化反应、电催化反应和负载金属纳米粒子催化氧化还原反应等过程中的应用,讨论了木质素类型、制备或活化改性条件对催化材料性能的影响,也指出了当前木质素基催化剂的开发研究难点和未来发展方向。  相似文献   

16.
负载型催化剂具有重要的应用背景,研究表面分散组分与载体之间的相互作用.对于了解催化过程的本质,进而设计开发高效实用的催化剂均有重要的指导意义.本课题组近年来在该领域中进行了一些探索研究,涉及的催化剂以负载型金属氧化物(如CuO/γ-Al_2O_3,CuO/Ce_xZr_(1-x)O_2和CuO/Ti_xSn_(1-x)O_2等)为主,涉及的反应包括CO完全氧化和NO+CO反应.通过改变活性组分的负载量、添加改性剂和改变样品制备条件等制得一系列样品,用多种固体催化剂表征手段考察各组分在催化剂中的作用以及在上述催化反应中的活性变化规律.研究表明:(1)金属氧化物和卤化物等离子化合物在氧化物载体表面的分散容量和分散后的一些性质均可从"嵌入模型"的考虑得到解释;(2)处于不同载体表面的活性物种或同一载体表面不同结构的活性物种,由于其存在状态的差异使得其氧化还原性质和催化性质不同;(3)在相关催化剂体系中进行的CO完全氧化和NO+CO反应的结果显示,通过探索催化剂的"组成-结构-性质"间的关系,有可能为实际催化剂的设计提供理论参考.  相似文献   

17.
龙思宇  裴响林  罗丹  付海  龚维 《化学通报》2021,84(2):120-128
钌催化剂是近年来新兴的贵金属催化剂,其负载型催化剂具有节约成本、可回收利用、催化性能优异等优势,受到研究人员的广泛关注。本文对负载型钌基催化剂在氨合成反应、加氢反应、氧化反应的合成及应用进行了综述,主要阐述了反应过程中的载体与助剂、制备方法和催化性能,并对当前反应中存在的问题进行归纳和总结,最后提出负载型钌基催化剂现阶段亟需解决的问题以及对未来的主要发展趋势进行了展望。  相似文献   

18.
刘莹  吕阳成  骆广生 《催化学报》2013,34(9):1635-1643
采用微流控技术结合悬浮聚合方法实现了百微米级含膦配体聚苯乙烯微胶囊的可控制备, 微胶囊尺寸在320~420 μm范围内可调, 且单分散性好. 扫描电子显微镜、能量散射光谱和电感耦合等离子发射光谱结果证实了其形貌和组成的均匀性及钯负载的可控性和有效性. 以溴代芳烃与苯硼酸的Suzuki偶联反应为模型反应评价了负载Pd(PPh3)4的百微米级微胶囊的催化性能, 发现其性能与文献报道的7~8 μm的同类催化剂微胶囊接近, 且均优于均相催化剂; 该催化剂经简单过滤后, 可实现多次循环使用, 未发现活性物种的流失. 该法实现了连续制备, 因而有助于提高制备的效率和可控性. 另外, 所制百微米级催化剂微胶囊在固定床反应器内具有较高催化剂浓度和机械性能, 且优于浆态床中使用的微米级催化剂微胶囊.  相似文献   

19.
管再鸿  卢胜梅  李灿 《催化学报》2015,(9):1535-1542
碳纳米管的独特性质,特别是其一维有序的管腔结构所形成的限域环境在催化反应中的应用引起了广泛的兴趣.已有将常规的液相氢化反应和气相反应限域于碳纳米管内的研究报道,并且大多数的研究结果显示限域于碳纳米管内的反应活性和/或选择性有明显提高,但多数研究没有对此给出清晰的解释.金鸡纳碱修饰的Pt催化剂催化的α-酮酸酯不对称氢化体系被认为是多相不对称催化领域发展的里程碑.早期的研究是简单的将碳纳米管作为Pt催化剂的载体用于α-酮酸酯不对称氢化反应,取得了中等的活性和对映体选择性.我们研究组发展了一种催化剂制备方法,可选择性的将Pt纳米粒子限域于碳纳米管管腔内或担载在碳纳米管管外,并将所制备的碳纳米管Pt催化剂应用于α-酮酸酯多相不对称催化反应中,发现封装于管腔内的管内型Pt纳米粒子的催化性能显著高于负载在管腔外壁的管外型Pt纳米粒子的催化性能.然而,对于管内型Pt催化剂催化性能增强的原因并不清楚. CO化学吸附和高分辨投射电镜(HRTEM)的表征结果表明管腔内外的Pt纳米粒子的大小和形貌没有明显区别.本论文在上述研究基础上,采用X射线光电子能谱(XPS),氢气程序升温脱附(H2-TPD),紫外可见光谱(UV-Vis)等表征手段研究了Pt纳米粒子担载于碳纳米管内和管外形成的催化剂在α-酮酸酯的不对称氢化反应中催化性能差异的原因. XPS测试结果表明,管内型和管外型Pt催化剂的载体的碳物种分布没有显出差异,但催化活性中心Pt纳米粒子的Pt物种组成不同.经225 oC H2还原后管外型Pt催化剂不存在高氧化态的Pt物种,而管内型Pt催化剂在400 oC H2还原仍然具有7%的高氧化态Pt物种.相应的催化反应结果表明,具有这种稳定的高氧化态Pt物种有利于获得高对映体选择性.参比催化剂商业化的Pt/AC和Pt/Al2O3的XPS测试结果也表明,对映体选择性高的Pt/Al2O3催化剂具有较高含量的高氧化态Pt物种.同时我们发现高氧化态Pt物种有利于催化剂对手性修饰剂和反应底物的吸附.虽然文献中一般认为Pt0是该反应的活性中心,但我们认为这些高氧化态的Pt物种有利于纳米粒子和手性修饰剂之间的相互作用,从而提高反应的对映选择性.我们进一步研究了表明高氧化态的Pt物种能存在于碳纳米管管腔内的原因.发现在催化剂制备过程中所使用的还原剂甲酸钠中残留的钠离子能稳定碳纳米管管腔内高氧化态Pt物种.我们采用H2直接还原制备了不含钠离子的参比管内型Pt催化剂.该参比催化剂的对映体选择性与管外型Pt催化剂相当,明显低于管内型Pt催化剂.同时该参比催化剂对手性修饰剂和底物的吸附能力弱于管内型Pt催化剂.以上结果清晰的表明了碳纳米管内由钠离子稳定的高氧化态Pt物种在α-酮酸酯多相不对称催化反应中的重要作用.然而,我们发现高氧化态Pt+物种含量的差异并不能很好的解释管内型和管外型Pt催化剂反应活性的差异. H2-TPD的结果表明相比于管外型Pt纳米粒子催化剂,管内型Pt纳米粒子具有更高的活化氢分子的能力,相应的催化反应结果表明,管外型Pt催化剂的反应活性随H2压力的降低而显著降低,而管内型Pt催化剂在0.1 MPa H2条件下仍然具有较高活性.简单的动力学模拟结果表明,在0.1 MPa H2条件下,碳纳米管管腔能显著富集H2.  相似文献   

20.
纳米碳管负载金属镍催化叶绿素加氯反应   总被引:3,自引:0,他引:3  
用等体积浸渍法制备了纳米碳管负载金属镍催化剂,采用电镜(TEM)、红外光谱(IR)对催化剂的形貌、结构进行了表征,并考察了常温常压下不同Ni负载量的催化剂对叶绿素加氢反应的性能。结果表明,纳米碳管负载镍催化剂在催化反应过程中保持高分散态,不会发生团聚,而经过硝酸氧化后的纳米碳管负载镍催化剂在催化反应中表现出高的活性,当Ni负载量为7%时,催化活性最好,叶绿素分子开环生成各种小分子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号