首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
毛细管电泳和毛细管电色谱技术在农药残留检测中的应用   总被引:7,自引:2,他引:5  
林振宇  黄露  陈国南 《色谱》2009,27(1):9-18
由于毛细管电泳(CE)和毛细管电色谱(CEC)具有所需样品体积小、分离效率高等特点,越来越多的学者已将它们应用到农药残留(简称农残)检测中,并将它们同各种不同的检测器以及样品浓缩方法相结合,以提高检测的灵敏度。本文对CE和CEC两种方法中所涉及的常见的样品预浓缩方法进行了简要的介绍。对各种不同类型的检测器(如紫外检测、荧光检测、电化学检测以及质谱检测等)的优缺点及其在农残检测中的应用情况进行了评述;同时对手性农药的CE和CEC分离检测情况进行了特别介绍;并对CE和CEC在农残分析与检测中的应用前景进行了展望。  相似文献   

2.
螯合离子色谱法分析复杂基体中痕量金属离子的研究   总被引:7,自引:0,他引:7  
吕海涛  牟世芬  侯小平  童沈阳 《色谱》1998,16(2):100-105
发展了应用螯合离子色谱法分析复杂基体中痕量金属离子的新方法。针对不同的检测目的,利用螯合柱(MetPacCC-1)和浓缩柱(TMC-1),采用适当的洗脱液在线将基体中的阴离子、一价阳离子、碱土金属离子以及其它干扰离子除去,同时,浓缩富集待测的痕量金属离子,然后再选择适当的梯度淋洗体系,在含有双功能基的分析柱上分离Pb,Cu,Cd,Co,Zn和Ni等过渡金属离子和14种镧系金属离子,继而用在线柱后衍生和光度法检测。方法简单快速,样品经适当的酸消解成溶液后即可进样,灵敏度高,检测限为10-9级甚至更低。  相似文献   

3.
刘玉兰  陈雅莉  肖小华  夏凌  李攻科 《色谱》2020,38(10):1197-1205
样品前处理能将待测物从复杂基质中预先分离富集出来,以提高分析方法的灵敏度、选择性和准确性,是复杂样品分析的关键步骤。样品前处理是一个非自发的、从无序到有序的熵减过程,不仅费时费力,还极易引起误差。向体系输入能量和降低体系熵值可以增强分离富集效果,加快样品制备过程。将电场引入在线样品前处理,既能向体系做功,又能驱动样品定向迁移,使前处理的熵减过程快速顺利进行,是快速样品制备的有效途径。基于电驱动的在线分离富集技术综合了多种加速策略:(1)以电场形式向体系输入能量,加速传质和传热过程;(2)采用电渗流、电泳等电驱动定向流实现样品在分离、富集、检测各步骤之间的定向迁移,保证样品前处理与检测顺利进行;(3)利用在线联用技术集成样品前处理与分析检测各步骤,从而提高自动化程度,减少人为误差;(4)通过微型化装置或微萃取方法提高样品制备效率,缩短样品制备时间。该文总结了近10年与基于电驱动的在线快速分离富集技术相关的90多篇文献,综述了该技术领域的研究进展,探讨了电驱动毛细管在线快速分离富集技术、电驱动芯片在线快速分离富集技术和电驱动膜萃取在线分离富集技术各自的优势和潜力,并展望了该类技术的发展与应用趋势。  相似文献   

4.
电动胶束色谱中弱酸性化合物的柱上浓缩富集技术的研究   总被引:1,自引:0,他引:1  
吴慧芳  关福玉  罗毅 《色谱》1995,13(5):390-394
提出一种电动胶束色谱(MEKC)中弱酸性化合物的柱上浓缩富集技术,并得到实验证实。以七种弱酸性巴比妥类药物的MEKC分离为例,考察了样品溶剂中表面活性剂浓度、pH值和离子强度等对富集作用的影响。表面活性剂浓度,pH值对富集效应的影响较大。采用低浓度(略高于CMC点)表面活性剂、低浓度缓冲液作样品溶剂,调节溶剂pH值小于待测化合物的pKa-1,就可以对弱酸性化合物进行柱上富集。采用这种富集技术,可以压缩样品带的宽度从而提高柱效,在此基础上可通过加大进样量提高化合物的检测灵敏度。  相似文献   

5.
毛细管电泳 (CE)正向着实际体系分析和微型化分析的方向发展[1,2 ] .为提高分离效率 ,CE的进样量一般很小 (1 0 - 12 ~ 1 0 - 9L ) ,因此常采用在线样品富集方式以提高检测灵敏度 .电场放大进样 (FASI)是 CE中实现在线样品富集的简便方式[3] ,随着 CE和检测技术的发展 ,其应用范围和研究体系不断扩大[4 ] .三联吡啶钌 [Ru(bpy) 2 + 3]电化学发光 (ECL )作为一种高灵敏、高选择性的检测方法被逐渐应用于 CE分析 (CE-ECL) .我们对这种技术进行了研究 ,并将其应用于临床分析[5~ 7] .实验中发现 ,在施加正高压的条件下 ,不同进样条…  相似文献   

6.
许旭  陈钢  刘浩 《色谱》2020,38(10):1154-1169
药物分析是毛细管电泳(CE)的重要应用领域,所有CE分离模式与检测方法都在各种药物及其不同形式样品的分离分析中显示出特色和应用能力。该文从药品分析领域中的小分子药物(包括手性药物)及其有关物质、中药与天然产物、体内药物分析、生物制品药物分析等几个方面,综述了近几年CE在这些传统药物分析领域应用的研究进展。限于篇幅,未包括现代药物分析研究比较活跃的理化常数测定、亲和毛细管电泳与结合常数研究(药物与受体间的相互作用等)、临床生物标志物分析、代谢组学和微流控芯片CE分析等方面的内容。根据目前传统药物分析领域的发展,该文关注到近期CE在顺应药物分析的法规需求、电容耦合非接触电导检测(CE-C4 D)、改进检测灵敏度与精密度、CE-十二烷基硫酸钠(SDS)毛细管电泳、全柱成像毛细管等电聚焦(icIEF)、抗体分析等方面的新进展。该文结合文献,讨论了目前传统药物分析领域的需求,以及CE在其中的地位、挑战和机遇。对目前CE主要作为互补分析方法在化学药和中药分析中的应用研究提出了一些针对性的建议,期待CE在生物制品分析中的特色和能力得到进一步的发挥,同时提出CE-MS和对CE分析重复性改进等新进展可能对未来CE应用领域的大幅度扩展。该综述主要涉及近3年(2017年1月到2020年2月)及部分2016年的相关文献。  相似文献   

7.
毛细管电泳场放大进样化学发光检测10-16mol/L水平钴(Ⅱ)   总被引:1,自引:0,他引:1  
激光诱导荧光(LIF)以其灵敏度高及应用范围广等特点成为单分子检测的主要手段[1]. 但LIF除了仪器昂贵外, 还需对非荧光物质采用柱前或柱后衍生引入荧光团, 且该法易受拉曼散射、瑞利散射和溶剂噪音的影响, 产生高背景干扰. 化学发光(CL)检测灵敏度高, 光学系统简单、无须外加光源及分光系统, 背景低, 避免了杂散光和光源不稳定性的影响. 这些优异性能使其有可能成为毛细管电泳(CE)中的一种超灵敏检测手段. 关于毛细管电泳在线化学发光检测, 本研究组曾提出一种新的试剂混合模式[2], 并设计了一种新颖的检测接口[3], 降低了噪音, 显著提高了信噪比. 场放大进样在线富集技术可用于提高检测灵敏度, 其对有机化合物[4~6]及金属配合物[7]等方面的研究已有报道. 浓缩因子达到1 500[8]. 我们系统地研究了场放大进样对金属离子的富集作用后发现, 所研究的金属离子如钴(Ⅱ)、铬(Ⅲ)、铜(Ⅱ)及镍(Ⅱ)等的浓缩因子可达到104~106.  相似文献   

8.
将在线富集技术同二维(2D)毛细管电泳(CE)分离相结合同时提高复杂样品中痕量组分的分离度和检测灵敏度.毛细管区带电泳(CZE)作为第一维,分析物根据淌度不同进行分离,第一维流出组分进入第二维毛细管,根据分配系数不同进行胶束电动毛细管色谱(MEKC)分离.采用阳离子选择性耗尽进样(CSEI)在柱预富集,延长进样时间,增大进样量;同时在二维毛细管接口处采用动态pH联接/胶束扫集在线富集技术不仅避免第一维分离组分在接口处扩散,还可进一步压缩样品区带.同常规电动进样CE分离相比,该在线富集二维分离技术的分离能力远远高于一维CZE或MEKC分离,富集倍数达到(0.5~1.2)×104.该法成功应用于人体尿样中四种药物及对映体的分析测定,浓度检出限为0.1~0.3μg/L.进一步研究了人体尿样中四种药物24h内的药代动力学规律.  相似文献   

9.
正毛细管电泳技术(CE)自1981年提出以来,得到了快速的发展。由于采用高电场,其柱效高、分离速度快、样品用量少,在生命科学、环境检测、药物分析和食品检验等领域得到了广泛应用[1-4],其常见的检测方法有紫外-可见吸收法、化学发光法、电化学法及荧光法等[5]。在实际样品检测中,目标物的含量较低,且其检测信号还易受成分复杂的样品基质的干扰,因此,需要灵敏度高的分析方法。激光诱导荧光检测法是一  相似文献   

10.
采用在线Sweeping(推扫 )富集技术 ,建立了胶束毛细管电泳法测定血液中痕量乳酸环丙沙星的方法。考察了背景溶液pH值、SDS浓度、进样时间、血样预处理方法等对乳酸环丙沙星富集效果的影响。使用未涂层的毛细管柱 (5 5cm× 75 μmi.d .,有效柱长 4 7cm) ,30mmol/L硼砂 +80mmol/L十二烷基硫酸钠 (pH =9.4 0 )为背景溶液 ,在紫外检测波长 2 5 4nm、运行电压 1 8kV条件下 ,血浆样品用乙腈除蛋白后直接在线Sweep ing富集 ,富集倍数可达 6 0 0倍。线性范围在 0 .0 4~ 1 0mg/L (r =0 .999,n =8)。检出限为 0 .0 1mg/L。本方法减少了样品预处理的繁琐过程 ,弥补了毛细管电泳 (CE)在测定血液中痕量组分方面的不足 ,为CE在体内痕量药物分析等方面的应用提供了新的方法  相似文献   

11.
Single-drop microextraction (SDME) has been recognized as one of the simple miniaturized sample preparation tools for the isolation and preconcentration of several analytes from a complex sample matrix. In this review, we explored the applications of SDME coupled with various analytical techniques (spectroscopy, chromatography, and mass spectrometry) for the analysis of organic molecules, inorganic ions, and biomolecules from various sample matrices including food, environmental, clinical, pharmaceutical, and industrial samples. Also, it summarizes the use of nanoparticles in SDME combined with various analytical tools for the rapid analysis of several trace-level target analytes. An overview of ionic liquids, deep eutectic solvents, and SUPRAS, which improved the selectivity and sensitivity of various analytical techniques toward several analytes, as promising extracting solvent systems in SDME is also included. Finally, discussed the impressive analytical features and future perspectives of SDME in this review article.  相似文献   

12.
Capillary electrophoresis (CE) has become one of the most useful tools in separation science because of its high separation efficiency, low cost, versatility, ease of sample preparation and automation. However, some limitations of CE, such as poor concentration sensitivity due to its lower sample loading and shorter optical path length, limits its further applications in separation science. In order to solve this problem, various on-line sample preconcentration techniques such as transient isotachophoresis preconcentration, field-enhanced sample stacking, micelle to solvent stacking, micelle collapse, dynamic pH junction, sweeping, solid phase extraction, single drop microextraction and liquid phase microextraction have been combined with CE. Recent developments, applications and some variants together with different combinations of these techniques integrating in CE are reviewed here and our discussions will be confined to the past three years (2008–2011).   相似文献   

13.
On-line preconcentration methods for capillary electrophoresis   总被引:3,自引:0,他引:3  
Osbourn DM  Weiss DJ  Lunte CE 《Electrophoresis》2000,21(14):2768-2779
The limits of detection (LOD) for capillary electrophoresis (CE) are constrained by the dimensions of the capillary. For example, the small volume of the capillary limits the total volume of sample that can be injected into the capillary. In addition, the reduced pathlength hinders common optical detection methods such as UV detection. Many different techniques have been developed to improve the LOD for CE. In general these techniques are designed to compress analyte bands within the capillary, thereby increasing the volume of sample that can be injected without loss of CE efficiency. This on-line sample preconcentration, generally referred to as stacking, is based on either the manipulation of differences in the electrophoretic mobility of analytes at the boundary of two buffers with differing resistivities or the partitioning of analytes into a stationary or pseudostationary phase. This article will discuss a number of different techniques, including field-amplified sample stacking, large-volume sample stacking, pH-mediated sample stacking, on-column isotachophoresis, chromatographic preconcentration, sample stacking for micellar electrokinetic chromatography, and sweeping.  相似文献   

14.
CE is gaining great popularity as a well‐established separation technique for many fields such as pharmaceutical research, clinical application, environmental monitoring, and food analysis, owing to its high resolving power, rapidity, and small amount of samples and reagents required. However, the sensitivity in CE analysis is still considered as being inferior to that in HPLC analysis. Diverse enrichment methods and techniques have been increasingly developed for overcoming this issue. In this review, we summarize the recent advances in enrichment techniques containing off‐line preconcentration (sample preparation) and on‐line concentration (sample stacking) to enhancing sensitivity in CE for trace analysis over the last 5 years. Some relatively new cleanup and preconcentration methods involving the use of dispersive liquid–liquid microextraction, supercritical fluid extraction, matrix solid‐phase dispersion, etc., and the continued use and improvement of conventional SPE, have been comprehensively reviewed and proved effective preconcentration alternatives for liquid, semisolid, and solid samples. As for CE on‐line stacking, we give an overview of field amplication, sweeping, pH regulation, and transient isotachophoresis, and the coupling of multiple modes. Moreover, some limitations and comparisons related to such methods/techniques are also discussed. Finally, the combined use of various enrichment techniques and some significant attempts are proposed to further promote analytical merits in CE.  相似文献   

15.
The combined use of solid-phase microextraction (SPME) and different on-line preconcentration strategies for ultrasensitive capillary electrophoresis-ultraviolet (CE-UV) analysis of five pesticides in a single run is investigated. Normal stacking mode (NSM), field-enhanced sample injection (FESI), and stacking with matrix removal (SWMR) are explored to increase the sensitivity of the CE-UV analysis of a selected group of pesticides (cyprodinil, cyromazine, pyrifenox, pirimicarb, and pyrimethanil). It could be observed that reverse polarity-stacking with matrix removal (RP-SWMR) provided the best results in terms of sensitivity (enhancement was up to 272-fold compared with normal injection). The separation buffer consisted of 0.4 mM cetyltrimethylammonium chloride (CTAC), 0.4 M acetic acid at pH 4 containing 5% v / v 2-propanol. This approach was then combined with SPME to determine the pesticides in water, apple, and orange juice. The combination of both preconcentration procedures allowed the determination of these pesticides at concentrations down to 2.5 microg / L in water and 3.1 microg / L in juices (i.e., levels well below the maximum residue limits allowed for these compounds). To our knowledge, this is the first report showing the great possibilities of the combined use of SPME, on-line sample preconcentration, and CE for pesticide analysis.  相似文献   

16.
The miniaturization and improvement of sample preparation is a challenge that has been fulfilled up to a point in many fields of analytical chemistry. Particularly, the hyphenation of microextraction with advanced analytical techniques has allowed the monitoring of target analytes in a vast variety of environmental samples. Several benefits can be obtained when miniaturized techniques such as solid-phase microextraction (SPME) or liquid-phase microextraction (LPME) are applied, specifically, their easiness, rapidity and capability to separate and pre-concentrate target analytes with a negligible consumption of organic solvents. In spite of the great acceptance that these green sample preparation techniques have in environmental research, their full implementation has not been achieved or even attempted in some relevant environmental matrices.  相似文献   

17.
The popularity of ionic liquids (ILs) has grown during the last decade in enhancing the sensitivity of CE through different off‐line or on‐line sample preconcentration techniques. Water‐insoluble ILs were commonly used in IL‐based liquid phase microextraction, in all its variants, as off‐line sample preconcentration techniques combined with CE. Water‐soluble ILs were rarely used in IL‐based aqueous two phase system (IL‐ATPS) as an off‐line sample preconcentration approach combined with CE in spite of IL‐ATPS predicted features such as more compatibility with CE sample injection due to its relatively low viscosity and more compatibility with CE running buffers avoid, in some cases, anion exchange precipitation. Therefore, the attentions for the key parameters affecting the performance of IL‐ATPSs were generally presented and discussed. On‐line CE preconcentration techniques containing IL‐based surfactants at nonmicellar or micellar concentrations have become another interesting area to improve CE sensitivity and it is likely to remain a focus of the field in the endeavor because of their numerous to create rapid, simple and sensitive systems. In this article, significant contributions of ILs in enhancing the sensitivity of CE are described, and a specific overview of the relevant examples of their applications is also given.  相似文献   

18.
A general view of the different strategies used in the last years to enhance the detection sensitivity in chiral analysis by CE is provided in this article. With this purpose and in order to update the previous review by García-Ruiz et al., the articles appeared on this subject from January 2005 to March 2007 are considered. Three were the main strategies employed to increase the detection sensitivity in chiral analysis by CE: (i) the use of off-line sample treatment techniques, (ii) the employment of in-capillary preconcentration techniques based on electrophoretic principles, and (iii) the use of alternative detection systems to the widely employed on-column UV-Vis absorption detection. Combinations of two or three of the above-mentioned strategies gave rise to adequate concentration detection limits up to 10(-10) M enabling enantiomer analysis in a variety of real samples including complex biological matrices.  相似文献   

19.
The sample preparation step has been identified as the bottleneck of analytical methodology in chemical analysis. Therefore, there is need for the development of cost‐effective, easy to operate, and environmentally friendly miniaturized sample preparation technique. The microextraction techniques combine extraction, isolation, concentration, and introduction of analytes into analytical instrument, to a single and uninterrupted step, and improve sample throughput. The use of liquid‐phase microextraction techniques for the analysis of pesticide residues in fruits and vegetables are discussed with the focus on the methodologies employed by different researchers and their analytical performances. Analytes are extracted using water‐immiscible solvents and are desorbed into gas chromatography, liquid chromatography, or capillary electrophoresis for identification and quantitation.  相似文献   

20.
An on-line preconcentration method based on ion exchange solid phase extraction was developed for the determination of cationic analytes in capillary electrophoresis (CE). The preconcentration-separation system consisted of a preconcentration capillary bonded with carboxyl cation-exchange stationary phase, a separation capillary for zone electrophoresis and a tee joint interface of the capillaries. Two capillaries were connected closely inside a 0.3 mm i.d. polytetrafluoroethylene tube with a side opening and fixed together by the interface. The preparations of the preconcentration capillaries and interface were described in detail in this paper. The on-line preconcentration and separation procedure of the analysis system included washing and conditioning the capillaries, loading analytes, filling with buffer solution, eluting analytes and separating by capillary zone electrophoresis (CZE). Several analysis parameters, including sample loading flow rate and time, eluting solution and volume, inner diameter and length of preconcentration capillary etc., were investigated. The proposed method enhanced the detection sensitivity of CE-UV about 5000 times for propranolol and metoprolol compared with normally electrokinetic injection. The detection limits of propranolol and metoprolol were 0.02 and 0.1 microg/L with the proposed method respectively, whereas those were 0.1 and 0.5 mg/L with conventional electrokinetic injection. The experiment results demonstrate that the proposed technique can increase the preconcentration factor evidently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号