首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 825 毫秒
1.
Offwhite pure Fe_2P_2O_7 was synthesized through solid phase reaction using Fe_2O_3 and NH_4H_2PO_4 in argon atmosphere.The reaction products of Fe_2O_3 and NH4_H_2PO_4 at a series of temperatures from 400 to 900℃were characterized by XRD.Comparison and analysis of XRD patterns of resultant products indicated well-crystallized Fe_2P_2O_7 could be obtained over 630℃and Fe_2P_2O_7 prepared at 700℃was triclinic in cell type.Comparison of the cell parameters proved that the as-prepared Fe_2P_2O_7 belonged toβ- Fe_2P_2O_7 in crystal phase and SEM showed its size distribution was 0.5-2μm.  相似文献   

2.
探究Fe_3O_4@(DS-LDH)的最佳合成方法及合成条件。对比共沉淀法、离子交换法、焙烧还原法制备的Fe_3O_4@(DS-LDH)。通过DLS、Zeta电位、XRD、FT-IR、SEM、VSM等手段对样品表征分析,利用高效液相法测定载药量。采用L_(16)(4~5)正交试验优化共沉淀法合成工艺,并研究Fe_3O_4@(DS-LDH)的体外缓释性能。结果表明,Fe_3O_4@(DS-LDH)的最优合成条件:n(Mg~(2+))/n(Al~(3+))=2,n(Mg~(2+))/n(总Fe)=2,pH=10.5,晶化温度为90℃。最优条件下载药量达27.59%,Fe_3O_4粒径为168.25nm,Fe_3O_4@(DS-LDH)粒径为128.58nm。Fe_3O_4和Fe_3O_4@(DS-LDH)具有较好磁性性能。外加磁场条件下,体外缓释性能良好,12h趋于稳定,达84.65%。表明Fe_3O_4@(DS-LDH)是良好的磁靶向药物传送控制系统。  相似文献   

3.
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g~(-1),3C时放电容量仍然可保持在160.5 m Ah·g~(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。  相似文献   

4.
以玉米秸秆为生物模板,经铁盐和钛盐溶液浸渍后煅烧,制备了新型Fe_3O_4/TiO_2分层介孔玉米秸秆碳骨架复合材料(Fe_3O_4/TiO_2@MSC),并研究了其多相UV-Fenton体系降解四环素的效能.利用X射线衍射(XRD)、X射线光电子能谱(XPS)、N2吸附-脱附、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对合成的催化剂进行了表征.结果表明,Fe_3O_4/TiO_2@MSC保留了玉米秸秆的分级多孔形态,纳米Fe_3O_4和TiO_2在MSC表面生长,秸秆碳作为骨架提高了纳米Fe_3O_4的分散性,防止其团聚,提高了催化剂的稳定性,并且能够增加材料的比表面积和活性点位,进而增强对UV-Fenton体系的催化活性. TiO_2光催化和多相Fenton体系的协同作用促进了Fe(Ⅲ)向Fe(Ⅱ)转化.催化性能研究结果表明,在相同条件下,Fe_3O_4/TiO_2@MSC催化的多相UV-Fenton体系盐酸四环素(TCH)降解效率在反应40 min后达到99. 8%,远高于Fe_3O_4@MSC+H2O_2(30%),UV+H2O_2(73%)、UV+Fe_3O_4@MSC+H2O_2(89. 1%)和UV+Fe_3O_4/TiO_2+H2O_2(89. 2%)体系,并且该体系在中性甚至碱性条件下均能达到满意的TCH去除效果.  相似文献   

5.
采用沉淀法制备了Fe(OH)_3和Fe_2O_3。通过硫酸化处理得到SO_4~(2-)/Fe(OH)_3和SO_4~(2-)/Fe_2O_3两种催化剂,并将其应用于氨选择性催化还原NO_x(NH_3-SCR)反应,研究了SO_4~(2-)功能化处理对Fe_2O_3催化剂上NH_3-SCR脱硝性能的促进机理。结果表明,与纯的Fe_2O_3相比,硫酸化处理得到的催化剂上SCR活性得到显著提升;其中,SO_4~(2-)/Fe(OH)_3表现出更加优异的催化性能,在250-450℃时NO_x转化率高于80%,且具有优异的稳定性和抗H_2O+SO_2性能。XRD、Raman、TG、FT-IR、H_2-TPR、NH_3-TPD和in situ DRIFTS等表征结果显示,硫酸功能化处理能抑制Fe_2O_3的晶粒生长,同时SO_4~(2-)与Fe~(3+)结合形成硫酸盐复合物,提高了催化剂表面酸性位点的数量和酸强度,抑制了Fe_2O_3上的氨氧化反应,从而提高了其脱硝催化性能。  相似文献   

6.
以四氧化三铁(Fe_3O_4)、丙烯酰胺(AM)、丙烯酸(AA)、丙烯腈(AN)为原料,采用反相乳液聚合法和沉淀聚合法制备核-壳结构的磁性凝胶微球调剖剂P(AA-AM-AN)/Fe_3O_4.利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和振动样品磁强计(VSM)对P(AA-AM-AN)/Fe_3O_4进行了表征,研究了不同制备条件下调剖剂的吸水溶胀性能,探讨了其在模拟地层环境条件下的堵水调剖性能.研究结果表明,制备的具有超顺磁性的P(AA-AM-AN)/Fe_3O_4复合微球可实现磁性分离回收处理.由于疏水性聚丙烯腈的存在,所制备的磁性微球调剖剂具有良好的运送特性.当m(AN)∶m(P(AA-AM)/Fe_3O_4)为1.25∶1时,P(AA-AM-AN)/Fe_3O_4的吸水性能最优,吸水倍率高达82.8 g/g.另外,P(AA-AM-AN)/Fe_3O_4的吸水倍率随油藏地层水温度的增加而逐步增大,随NaCl含量的增加而逐渐降低.  相似文献   

7.
以聚乙烯吡咯烷酮(PVP)为纤维骨架,乙醇为溶剂,乙酸锌[Zn(CH_3COO)_2·2H_2O]和三乙酰丙酮铁(C_(15)H_(21)O_6Fe)为原料,利用静电纺丝技术结合溶胶-凝胶法制备前驱体纤维,经焙烧后得到不同摩尔比的FTO导电玻璃负载Fe_2O_3/ZnO复合光电极(Fe_2O_3/ZnO/FTO).利用热重-差热分析仪(TG-DTA)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)等对材料进行了表征,以亚甲基蓝(MB)为目标降解物,探讨了复合材料的光电催化活性.结果表明,Fe_2O_3与ZnO的复合能够有效构建p-n异质结,利于光生电子和空穴的分离,其光电催化性能较纯ZnO/FTO和Fe_2O_3/FTO均有明显提高;不同n(Fe)/n(Zn)的复合光电极表现出了不同的光电催化活性,在相同催化时间内,当n(Fe)/n(Zn)=1∶1时,Fe_2O_3/ZnO/FTO对MB催化活性最佳,MB的降解率达到97%.  相似文献   

8.
铁酸铋的水热合成及其光催化性能   总被引:1,自引:0,他引:1  
以Fe(NO_3)_3·9H_2O和Bi(NO_3)_3·5H_2O为原料,NaOH为矿化剂,用水热法合成了柱状晶体Bi_2Fe_4O_9,其结构和催化性能经XRD,SEM和UV-Vis表征.结果表明,Bi_2Fe_4O_9截面边长约500 nm,长约2μm~3μm,分散均匀.Bi_2Fe_4O_9在可见光区域有较强吸收,对甲基橙降解效果较好.  相似文献   

9.
以乙二醇为溶剂,采用溶剂热法一步合成圆饼状LiFePO_4,然后以葡萄糖为碳源与合成的LiFePO_4前躯体高温烧结得到碳包覆的LiFePO_4/C复合材料,其振实密度高达1.3 g·cm~(-3)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对LiFePO_4/C复合材料进行了物相和形貌表征,研究结果表明制备得到的LiFePO_4呈圆饼状,且生成的圆饼是由单晶LiFePO_4纳米片堆积而成。此外,LiFePO_4颗粒表面碳层包覆均匀。将制备的LiFePO_4/C用作锂离子电池正极材料,电化学性能测试表明其具有高的充放电比容量(在0.1C时放电,其初始放电比容量为157.7 mAh·g~(-1))与良好的循环性能(500次循环后容量保持率为82.4%)。  相似文献   

10.
采用共沉淀法,合成了由两亲性嵌段共聚物聚(苯乙烯)-b-聚(甲基丙烯酸聚乙二醇酯)(PSt-bPMAPEG)修饰的Fe_3O_4-聚合物复合纳米粒子。以十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,N-(2-氨乙基)-3-氨丙基三甲氧基硅烷(AAPTS)为功能化试剂,制备了氨基功能化介孔材料Fe_3O_4/SiO_2-NH2。采用X射线衍射(XRD),傅里叶变换红外光谱(FT-IR),透射电子显微镜(TEM),N_2吸附/脱附等手段对Fe_3O_4/SiO_2-NH2进行了表征。结果表明,成功制备粒径约为50nm,孔径分别为3.3nm和42.9nm的Fe_3O_4/SiO_2介孔粒子。将磁性材料对水中酸性品红进行吸附性能研究,探讨了Fe_3O_4/SiO_2-NH2对染料酸性品红的吸附效率。结果表明:Fe_3O_4/SiO_2-NH2的用量为10mg,吸附时间为3.5min,溶液起始浓度为0.25mmol·L-1时吸附率达93.32%。  相似文献   

11.
在WPTA-H_2O_2-KOH体系中,通过WPTA的解聚制备了W∶O_2~(2-)为1∶4、2∶4和2∶2等3个不同组成的过氧钨酸钾,用IR、UV和XRD对其进行了表征。热分析结果表明存在新的晶态K_2W_2P_7物相。  相似文献   

12.
本文以β-环糊精(CD)为载体,通过负载Fe_3O_4和稀土镧(La)或铈(Ce),制备了可有效降解有机物的催化复合材料La-Fe_3O_4-CD和Ce-Fe_3O_4-CD。利用X射线光电子能谱分析及扫描电子显微镜对样品的结构与形貌进行表征,并以染料阳离子蓝X-GRL 300%为目标污染物,评价两种催化剂的催化降解性能。结果表明,当合成时间为6h、合成温度为160℃、Fe_3O_4与硝酸镧质量比为3∶1时,合成的La-Fe_3O_4-CD对于染料的催化降解效果最佳,其降解率可以达到98%;当合成时间为3h、合成温度为140℃、Fe_3O_4与硝酸铈质量比为3∶1时,合成的Ce-Fe_3O_4-CD对于染料的催化降解效果最佳,其降解率可以达到99%。  相似文献   

13.
蒸汽催化裂化(SCC)为煤焦油的提质提供了一种重要的方法。本研究以Al/Ce和Al/Zr共掺杂Fe_2O_3为催化剂研究了其在反应温度550℃、反应时间1 h下蒸汽催化裂化提质煤焦油的性能。催化剂表征显示掺杂的Fe_2O_3催化剂具有较小的晶粒粒径、较大的比表面积和孔体积。XPS表征表明,晶格氧是主要的活性氧物种,掺杂可以增加O~-的浓度。催化蒸汽裂化结果表明,Al/Ce和Al/Zr共掺杂可以提高Fe_2O_3催化活性。轻焦油(沸点低于360℃)在Fe AlZr1、Fe AlZr2、Fe AlCe1和Fe AlCe2上的产率分别为63. 2%、58. 1%、60. 2%和55. 1%,高于Fe_2O_3上的产率49. 7%。来自水蒸气解离和催化剂中的活性氧共同参与了煤焦油的改质。催化剂的比表面积和O-含量是决定蒸汽催化裂化性能的主要因素。  相似文献   

14.
用Fe_3(CO)_(12)与亚磷酸三硫代苯酯P(SC_6H_5)_3反应得到标题化合物。P(SC_6H_5)_3以其裂解分子片SC_6H_5和P(SC_6H_5)_2配位。用X-ray衍射技术测定了该化合物的晶体结构, 晶体属正交晶系, 空间群为Pbca, a=1.7422(7), b=1.0634(6), c=2.898(12) nm; V=5.370 nm, z=8, D_c=1.579 g·cm~(-3)。由直接法和差值Fourier合成解出全部非氢原子坐标, 并用全矩阵最小二乘法修正, 最后偏离因子R=0.054, R_w=0.058, 分子结构中心的Fe_2SP折叠环沿S…P线或沿Fe—Fe键折叠的二面角(分别为76.1°和82°)比其它具有中心Fe_2S_2, Fe_2P_2和Fe_2SP折叠环的类似化合物中的相应值小, Fe—Fe键长为0.2572 nm, Fe—S(1)—Fe=68.6°, Fe—P—Fe=70.7°。  相似文献   

15.
分别采用水热、水热-包覆、球磨法制备了Fe_3O_4、聚酰亚胺(PI)改性的Fe_3O_4@PI和Fe_3O_4-PI催化剂用于费托合成反应,对比研究了PI改性及其含量变化对Fe基催化剂催化CO加氢产物分布的影响规律。结合XRD、SEM、TEM、H_2-TPR、COTPD、FT-IR、XPS、TG和接触角实验等手段对催化剂样品进行了表征。结果表明,Fe_3O_4、Fe_3O_4@PI和Fe_3O_4-PI样品均为球形颗粒; PI改性促进了Fe_3O_4的还原,亲水性增强。Fe_3O_4@PI样品中,PI均匀包覆于Fe_3O_4表面,具有较好的热稳定性;与Fe_3O_4、Fe_3O_4-PI相比,Fe_3O_4@PI样品CO吸附增强。在CO加氢反应中,与Fe_3O_4相比,PI改性的Fe_3O_4@PI和Fe_3O_4-PI样品催化活性下降,二次加氢能力受到抑制,烯烃选择性提高; Fe_3O_4@PI样品烯烃选择性增加明显,烯烷比(O/P)由改性前的0.50提高至2.15;适宜含量的PI改性促进C5+烃生成。  相似文献   

16.
介绍一个仪器分析综合实验——纳米Fe_2O_3和Fe_3O_4的制备及其催化高氯酸铵热分解性能的研究。采用水热法合成纳米Fe_3O_4,进而煅烧得到纳米Fe_2O_3。使用X射线粉末衍射(XRD)对制得的样品结构进行表征,通过透射电镜(TEM)可以发现其为球形颗粒,粒径在10–20 nm范围内。将制得的纳米Fe_2O_3和纳米Fe_3O_4按不同比例加入高氯酸铵(AP)中,通过对混合物进行热分析(TG-DSC),发现纳米Fe_2O_3和纳米Fe_3O_4可以明显促进AP的分解,且Fe_2O_3的催化效果优于Fe_3O_4的催化效果,并对催化机理进行了简单讨论。通过该实验,可以让学生学习水热反应的方法,掌握利用XRD、热分析等多种手段对化合物结构及性能进行表征的技能。  相似文献   

17.
通过原位反应合成法成功合成了一种新型水溶性的磁性荧光复合纳米粒子Fe_3O_4@SiO_2@ZrO_2∶Tb~(3+),并通过扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)、红外光谱仪(FT-IR)、磁性测试仪和荧光(PL)光谱对其形貌、尺寸、相组成、磁性和荧光性能进行了表征。结果表明,核(Fe_3O_4@SiO_2)壳(ZrO_2∶Tb~(3+))结构组成的磁性荧光复合纳米粒子具有超顺磁性,其饱和磁化强度达到36 emu/g,并且在494 nm(~5D_4→~7F_6)、549 nm(~5D_4→~7F_5)、587 nm(~5D_4→~7F_4)和625 nm(~5D_4→~7F_3)处具有4个Tb~(3+)特有的荧光发射光谱带峰值。磁性荧光双功能的复合纳米粒子在生物医学领域具有潜在的应用价值。  相似文献   

18.
以氧化石墨烯(GO)为基底,Fe(NO_3)_3·9H_2O、异丙醇、甘油为原料,通过溶剂热法和后续热处理过程2步合成了Fe_3O_4@C/rGO复合材料,实现了碳包覆的Fe_3O_4纳米粒子自组装形成的分级结构空心球在氧化石墨烯片上的原位生长。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒流充放电等手段分析了材料的物理化学性能与储锂性能。结果表明,该复合材料在5.0 A·g~(-1)的电流密度下,仍有437.7 mAh·g~(-1)的可逆容量,在1.0 A·g~(-1)下循环200圈后还有587.3 mAh·g~(-1)的放电比容量。这主要归因于还原态氧化石墨烯(rGO)对碳包覆Fe_3O_4分级空心球整体结构稳定性和导电性的提高。  相似文献   

19.
采用溶胶-凝胶-程序升温一步法合成了复合材料K_8P_2V_2W_(16)O_(62)/TiO_2,经X-射线衍射(XRD)、扫描电子显微镜(SEM)对复合材料的结构和形貌进行了表征。结果表明,复合材料K_8P_2V_2W_(16)O_(62)/TiO_2中呈锐钛矿晶型结构的TiO_2附着在多酸K_8P_2V_2W_(16)O_(62)表面。以罗丹明B为模型分子,分别考察了K_8P_2V_2W_(16)O_(62)、TiO_2及复合材料K_8P_2V_2W_(16)O_(62)/TiO_2在紫外光下的降解性能,发现在120 min内,K_8P_2V_2W_(16)O_(62)/TiO_2的光催化活性优于K_8P_2V_2W_(16)O_(62)和TiO_2。  相似文献   

20.
以磷酸二异辛基酯(P204)为萃取剂,CCl4为溶剂,从Fe(NO3)2水溶液中萃取铁离子,以氨的乙醇溶液反萃含铁的有机相,通过优化控制相间传质过程,获得了Fe(OH)3前驱体,经煅烧后得α-Fe2O3粉体,采用TEM、FTIR、XRD等测试技术对α-Fe2O3进行表征。 研究表明,在油水相比为1∶1,水相c(Fe3+)=0.10 mol/L(pH=3.0)、油相P204为V(P204)∶V(CCl4)=1∶3、平衡时间为20 min,Fe3+萃取率达98.44%;反萃取溶液V(氨水)∶V(乙醇)=1∶7、陈化温度约10.0 ℃,制备纳米α-Fe2O3的煅烧温度为600 ℃较宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号