首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Xu B  Li QS  Xie Y  King RB  Schaefer HF 《Inorganic chemistry》2008,47(15):6779-6790
The cyclopentadienylrhenium carbonyls Cp 2Re 2(CO) n (Cp = eta (5)-C 5H 5; n = 5, 4, 3, 2) have been studied by density functional theory. The global minima for the Cp 2Re 2(CO) n ( n = 5, 4, 3, 2) derivatives are predicted to be the singly bridged structure Cp 2Re 2(CO) 4(mu-CO) with a formal Re-Re single bond; the doubly semibridged structure Cp 2Re 2(CO) 4 with a formal ReRe double bond; the triply bridged structure Cp 2Re 2(mu-CO) 3 with a formal ReRe triple bond; and the doubly bridged structure Cp 2Re 2(mu-CO) 2, respectively. The first three of these predicted structures have been realized experimentally in the stable compounds (eta (5)-C 5H 5) 2Re 2(CO) 4(mu-CO), (eta (5)-Me 5C 5) 2Re 2(CO) 4 and (eta (5)-Me 5C 5) 2Re 2(mu-CO) 3. In addition, structures of the type Cp 2Re-Re(CO) n with both rings bonded only to one metal and unknown in manganese chemistry are also found for rhenium but at energies significantly above the global minima. The unsaturated Cp 2Re-Re(CO) n structures ( n = 4, 3, 2) have agostic Cp hydrogen atoms forming C-H-Re bridges to the unsaturated Re(CO) n group with a Re-H distance as short as 2.04 A.  相似文献   

2.
The cyclopentadienylchromium carbonyls Cp(2)Cr(2)(CO)(n) and Cp*(2)Cr(2)(CO)(n) (Cp = eta(5)-C(5)H(5) and Cp* = eta(5)-Me(5)C(5); n = 3, 2) have been studied by density functional theory using the B3LYP and BP86 functionals. Triplet and singlet structures are found for Cp(2)Cr(2)(CO)(3), with the triplet isomer having an apparent Cr[triple bond, length as m-dash]Cr triple bond (2.295 A by BP86) and predicted to have a lower energy than the singlet isomer having an apparent Cr[quadruple bond, length as m-dash]Cr quadruple bond (2.191 A by BP86). Quintet, septet, and singlet structures, as well as a highly spin contaminated triplet structure, were found for the dicarbonyl Cp(2)Cr(2)(CO)(2). In all of the Cp(2)Cr(2)(CO)(n) (n = 3, 2) structures the carbonyls are asymmetric semi-bridging groups, typically with differences of 0.3-0.5 A between the shortest and longest M-C distances. Very little difference was found between the structures and energetics of the corresponding Cp and Cp* derivatives. These DFT studies suggest that the reported unstable photolytic decarbonylation product of Cp*(2)Cr(2)(CO)(4), characterized only by its infrared nu(CO) frequencies, is the singlet isomer of the tricarbonyl Cp*(2)Cr(2)(CO)(3).  相似文献   

3.
While, in general, decamethylzincocene, Zn(C5Me5)2, and other zincocenes, Zn(C5Me4R)2 (R = H, But, SiMe3), react with dialkyl and diaryl derivatives, ZnR'2, to give the half-sandwich compounds (eta5-C5Me4R)ZnR', under certain conditions the reactions of Zn(C5Me5)2 with ZnEt2 or ZnPh2 produce unexpectedly the dizincocene Zn2(eta5-C5Me5)2 (1) in low yields, most likely as a result of the coupling of two (eta5-C5Me5)Zn* radicals. An improved, large scale (ca. 2 g) synthesis of 1 has been achieved by reduction of equimolar mixtures of Zn(C5Me5)2 and ZnCl2 with KH in tetrahydrofuran. The analogous reduction of Zn(C5Me4R)2 (R = H, SiMe3, But) yields only decomposition products, but the isotopically labeled dimetallocene 68Zn2(eta5-C5Me5)2 and the related compound Zn2(eta5-C5Me4Et)2 (2) have been obtained by this procedure. Compound 2 has lower thermal stability than 1, but it has been unequivocally characterized by low-temperature X-ray diffraction studies. As for 1 a combination of structural characterization techniques has provided unambiguous evidence for its formulation as the Zn-Zn bonded dimer Zn2(eta5-C5Me4Et)2, with a short Zn-Zn bond of 2.295(3) A indicative of a strong Zn-Zn bonding interaction. The electronic structure and the bonding properties of 1 and those of related dizincocenes Zn2(eta5-Cp')2 have been studied by DFT methods (B3LYP level), with computed bond distances and angles for dizincocene 1 very similar to the experimental values. The Zn-Zn bond is strong (ca. 62 kcal.mol-1 for 1) and resides in the HOMO-4, that has a contribution of Zn orbitals close to 60%, consisting mostly of the Zn 4s orbitals (more than 96%).  相似文献   

4.
The divanadocene carbonyls Cp2V2(CO)n (n = 5, 4, 3, 2, 1; Cp = eta5-C5H5) have been studied by density functional theory using the B3LYP and BP86 functionals. The global minimum for Cp2V2(CO)5 with a V[triple bond]V distance of 2.452 A (BP86) is essentially the same as the structure of the known Cp2V2(CO)5 determined by X-ray diffraction. The global minimum of Cp2V2(CO)4 is a triplet electronic state with a V[triple bond]V distance of 2.444 A (BP86). However, slightly higher energy singlet Cp2V2(CO)4 structures are found either with a V[triple bond]V distance of 2.547 A (BP86) and one four-electron donor bridging CO group or with a V[quadruple bond]V distance of 2.313 A (BP86) and all two-electron donor bridging CO groups. Comparison is made between Cp2V2(CO)3 and the recently synthesized quintuply bonded RCrCrR (R = bulky aryl group) complexes of Power and co-workers. Four-electron donor bridging carbonyl groups become more prevalent upon further decarbonylation, leading ultimately to three singlet Cp2V2(eta2-mu-CO)2 isomers as well as triplet, quintet, and septet structures of Cp2V2(CO) with extremely low nu(CO) frequencies around 1400 cm(-1). Our most remarkable structural finding is the extremely short vanadium-vanadium distance (1.80 A, BP86) predicted for the singlet structure of Cp2V2(CO).  相似文献   

5.
The mechanism of reversible alkyne coupling at zirconium was investigated by examination of the kinetics of zirconacyclopentadiene cleavage to produce free alkynes. The zirconacyclopentadiene rings studied possess trimethylsilyl substituents in the alpha-positions, and the ancillary Cp2, Me2C(eta(5)-C5H4)2, and CpCp* (Cp* = eta(5)-C5Me5) bis(cyclopentadienyl) ligand sets were employed. Fragmentation of the zirconacyclopentadiene ring in Cp2Zr[2,5-(Me3Si)2-3,4-Ph2C4] with PMe3, to produce Cp2Zr(eta(2)-PhC[triple bond]CSiMe3)(PMe3) and free PhC[triple bond]CSiMe3, is first-order in initial zirconacycle concentration and zero-order in incoming phosphine (k(obs) = 1.4(2) x 10(-5) s(-1) at 22 degrees C), and the activation parameters determined by an Eyring analysis (DeltaH(double dagger) = 28(2) kcal mol(-1) and DeltaS(double dagger) = 14(4) eu) are consistent with a dissociative mechanism. The analogous reaction of the ansa-bridged complex Me2C(eta(5)-C5H4)2Zr[2,5-(Me3Si)2-3,4-Ph2C4] is 100 times faster than that for the corresponding Cp2 complex, while the corresponding CpCp* complex reacts 20 times slower than the Cp2 derivative. These rates appear to be largely influenced by the steric properties of the ancillary ligands.  相似文献   

6.
Potassium reduction of RZn(mu-I)2Li(OEt2)2 (R = [{(2,6-Pri2C6H3)N(Me)C}2CH]) affords the second compound with a Zn-Zn bond, RZn-ZnR. The air- and moisture-sensitive title compound was characterized by 1H NMR, elemental analyses, and single-crystal X-ray diffraction. The Zn-Zn bond was determined to be 2.3586(7) A; this value is only about 0.05 A longer than the Zn-Zn bond reported for Cp*Zn-ZnCp* (Cp* = C5Me5), the first reported compound with a Zn-Zn bond. In addition, density functional theory (DFT) computations on related model RZn-ZnR compounds provide insight into the intriguing Zn-Zn bond.  相似文献   

7.
Metalladichalcogenolate cluster complexes [Cp'Co{E(2)C(2)(B(10)H(10))}]{Co2(CO)5} [Cp' = eta5-C5H5, E = S(3a), E = Se(3b); Cp' = eta5-C5(CH3)5, E = S(4a), E = Se(4b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Mo(CO)2] [E = S(5a), Se(5b)], Cp*Co(micro2-CO)Mo(CO)(py)2[E(2)C(2)(B(10)H(10))] [E = S(6a), Se(6b)], Cp*Co[E(2)C(2)(B(10)H(10))]Mo(CO)2[E(2)C(2)(B(10)H(10))] [E = S(7a), Se(7b)], (Cp'Co[E(2)C(2)(B(10)H(10))]W(CO)2 [E(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(8a), E = Se(8b); Cp' = eta5-C5(CH3)5, E = S(9a), E = Se(9b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Ni [E = S(10a), Se(10b)] and 3,4-(PhCN(4)S)-3,1,2-[PhCN(4)SCo(Cp)S(2)]-3,1,2-CoC(2)B(9)H(8) 12 were synthesized by the reaction of [Cp'CoE(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(1a), E = Se(1b); Cp' = eta5-C5(CH3)5, E = S(2a), E = Se(2b)] with Co2(CO)8, M(CO)3(py)3 (M = Mo, W), Ni(COD)2, [Rh(COD)Cl]2, and LiSCN4Ph respectively. Their spectrum analyses and crystal structures were investigated. In this series of multinuclear complexes, 3a,b and 4a,b contain a closed Co3 triangular geometry, while in complexes 5a-7b three different structures were obtained, the tungsten-cobalt mixed-metal complexes have only the binuclear structure, and the nickel-cobalt complexes were obtained in the trinuclear form. A novel structure was found in metallacarborane complex 12, with a B-S bond formed at the B(7) site. The molecular structures of 4a, 5a, 6a, 7b, 9a, 9b, 10a and 12 have been determined by X-ray crystallography.  相似文献   

8.
Binuclear Cp(2)M(2)(μ-C(8)H(8)) derivatives have been synthesized for M = V, Cr, Co, and Ni and have now been studied theoretically for the entire first row of transition metals from Ti to Ni. The early transition metal derivatives Cp(2)M(2)(μ-C(8)H(8)) (M = Ti, V, Cr. Mn) are predicted to form low-energy cis-Cp(2)M(2)(μ-C(8)H(8)) structures with a folded C(8)H(8) ring (dihedral angle ~130°) and short metal-metal distances suggesting multiple bonding. These predicted structures are close to the experimental structures for M = V, Cr with V≡V and Cr≡Cr bond lengths of ~2.48 and ~2.36 ?, respectively. The middle to late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Mn, Fe, Co, Ni) with a twisted μ-C(8)H(8) ring and no metal-metal bonding. The hapticity of the central μ-C(8)H(8) ring in such structures ranges from five for Mn and Fe to four for Co and three for Ni and thus depend on the electronic requirements of the central metal atom. This leads to the favored 18-electron configuration for both metal atoms in the singlet Fe, Co, and Ni structures but only 17-electron metal configurations in the triplet Mn structure. In addition, the late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Fe, Co, Ni), with the tub conformation of the μ-C(8)H(8) ring functioning as a tetrahapto (M = Fe, Co) or trihapto (M = Ni) ligand to each CpM group. A μ-C(8)H(8) ring in the tub conformation also bonds to two CpFe units as a bis(tetrahapto) ligand in both singlet and triplet cis-Cp(2)Fe(2)(μ-C(8)H(8)) structures.  相似文献   

9.
The synthesis, structures, and unusual reactivity of (C5R5)2ZrR'(ClPh)+ chlorobenzene complexes are described. The reaction of (C5R5)2ZrR'2 with [Ph3C][B(C6F5)4] in C6D5Cl affords [(C5R5)2ZrR'(ClC6D5)][B(C6F5)4] chlorobenzene complexes (1-d5, R' = CH2Ph and (C5R5)2 = (C5H5)2; 2a-d-d5, R' = Me and (C5R5)2 = rac-(1,2-ethylene(bis)indenyl) (2a), (C5H5)2 (2b), (C5H4Me)2 (2c), (C5Me5)2 (2d, C5Me5 = Cp*)). Complexes 1 and 2b,c are thermally robust but are converted to [{(C5R5)2Zr(mu-Cl)}2][B(C6F5)4]2 (4b,c) by a photochemical process in ClPh solution. In contrast, 2d undergoes facile thermal ortho-C-H activation to yield [Cp*2Zr(eta2-C,Cl-2-Cl-C6H4)][B(C6F5)4] (5), which slowly rearranges to [(eta4,eta1-C5Me5C6H4)Cp*ZrCl][B(C6F5)4] (6) via beta-Cl elimination and benzyne insertion into a Zr-CCp* bond. The higher thermal reactivity of 2d versus that of 1 and 2b,c is attributed to steric crowding associated with the Cp* ligands of 2d, which forces a ClPh ortho-hydrogen close to the Zr-Me group.  相似文献   

10.
Heating a toluene solution of Cp*(CO)(C5H5N)FeSiMe2NPh2 led to insertion of pyridine into the iron-silicon bond to form Cp*(CO)Fe[eta3(C,C,C)-C5H5NSiMe2NPh2].  相似文献   

11.
研究了双核金属多重键配合物Cp2MM'(μ-C8H8)(MM'=ScMn,TiCr,ScCo,TiFe,VMn,VV,CrCr)的结构和成键模式.计算结果表明,对于28价电子体系,Cp2V2(μ-C8H8)基态为含V-V三重键的三态构型,其等电子体Cp2TiCr(μ-C8H8)为Ti-Cr四重键的单态,等电子体Cp2ScMn(μ-C8H8)为Sc-Mn三重键的单态.对于30价电子体系,Cp2Cr2(μ-C8H8)基态为含Cr-Cr三重键的单态,等电子体Cp2VMn(μ-C8H8)为含V-Mn单键的三态,等电子体Cp2ScCo(μ-C8H8)和Cp2TiFe(μ-C8H8)为含Sc-Co和Ti-Fe双键的单态.在三态Cp2MM'(μ-C8H8)中,两个金属原子多为17电子构型,而单态结构中两种金属原子多分别为16和18电子构型.  相似文献   

12.
The thermolysis of the phosphinidene complex [Cp*P[W(CO)5]2] (1) in toluene in the presence of tBuC(triple bond)CMe leads to the four-membered ring complexes [[[eta2-C(Me)C(tBu)]Cp*(CO)W(mu3-P)[W(CO)3]][eta4:eta1:eta1-P[W(CO)5]WCp*(CO)C(Me)C(tBu)]] (4) as the major product and [[W[Cp*(CO)2]W(CO)2WCp*(CO)[eta1:eta1-C(Me)C(tBu)]](mu,eta3:eta2:eta1-P2[W(CO)5]] (5). The reaction of 1 with PhC(triple bond)CPh leads to [[W(Co)2[eta2-C(Ph)C(Ph)]][(eta4:eta1-P(W(CO)5]W[Cp*(CO)2)C(Ph)C(Ph)]] (6). The products 4 and 6 can be regarded as the formal cycloaddition products of the phosphido complex intermediate [Cp*(CO)2W(triple bond)P --> W(CO)5] (B), formed by Cp* migration within the phosphinidene complex 1. Furthermore, the reaction of 1 with PhC(triple bond)CPh gives the minor product [[[eta2:eta1-C(Ph)C(Ph)]2[W(CO)4]2][mu,eta1:eta1-P[C(Me)[C(Me)]3C(Me)][C(Ph)](C(Ph)]] (7) as a result of a 1,3-dipolaric cycloaddition of the alkyne into a phosphaallylic subunit of the Cp*P moiety of 1. Compounds 4-7 have been characterized by means of their spectroscopic data as well as by single-crystal X-ray structure analysis.  相似文献   

13.
Using a combination of NMR methods we have detected and studied fluxional motions in the slip-sandwich structure of solid decamethylzincocene (I, [(eta5-C5Me5)Zn(eta1-C5Me5)]). For comparison, we have also studied the solid iminoacyl derivative [(eta5-C5Me5)Zn(eta1-C(NXyl)C5Me5)] (II). The variable temperature 13C CPMAS NMR spectra of I indicate fast rotations of both Cp* rings in the molecule down to 156 K as well as the presence of an order-disorder phase transition around 210 K. The disorder is shown to be dynamic arising from a fast combined Zn tautomerism and eta1/eta5 reorganization of the Cp* rings between two degenerate states A and B related by a molecular inversion. In the ordered phase, the degeneracy of A and B is lifted; that is, the two rings X and Y are inequivalent, where X exhibits a larger fraction of time in the eta5 state than Y. However, the interconversion is still fast and characterized by a reaction enthalpy of DeltaH = 2.4 kJ mol-1 and a reaction entropy of DeltaS = 4.9 J K-1 mol-1. In order to obtain quantitative kinetic information, variable temperature 2H NMR experiments were performed on static samples of I-d6 and II-d6 between 300 and 100 K, where in each ring one CH3 is replaced by one CD3 group. For II-d6, the 2H NMR line shapes indicate fast CD3 group rotations and a fast "eta5 rotation", corresponding to 72 degrees rotational jumps of the eta5 coordinated Cp* ring. The latter motion becomes slow around 130 K. By line shape analysis, an activation energy of the eta5 rotation of about 21 kJ mol-1 was obtained. 2H NMR line shapes analysis of I-d6 indicates fast CD3 group rotations at all temperatures. Moreover, between 100 and 150 K, a transition from the slow to the fast exchange regime is observed for the 5-fold rotational jumps of both Cp* rings, exhibiting an activation energy of 18 kJ mol-1. This value was corroborated by 2H NMR relaxometry from which additionally the activation energies 6.3 kJ mol-1 and 11.2 kJ mol-1 for the CD3 rotation and the molecular inversion process were determined.  相似文献   

14.
Compounds of the type M(2)Bz(3) (Bz = benzene, C(6)H(6)) have been of interest since the related triple-decker mesitylenechromium sandwich (1,3,5-Me(3)C(6)H(3))(3)Cr(2) has been synthesized and characterized structurally by X-ray crystallography. Theoretical studies predict the lowest-energy M(2)Bz(3) structures of the early transition metals Ti, V, and Cr to be the triple-decker sandwiches trans-Bz(2)M(2)(η(6),η(6)-μ-C(6)H(6)) having quintet, triplet, and singlet spin states, respectively. In these structures, the central benzene ring functions as a hexahapto ligand to each metal atom. The singlet rice-ball cis-Bz(2)M(2)(μ-C(6)H(6)) structures with a 2.64-? Mn═Mn double bond or a 2.81-? Fe-Fe single bond are preferred for the central transition metals Mn and Fe. Singlet triple-decker-sandwich structures trans-Bz(2)M(2)(μ-C(6)H(6)) return as the lowest-energy structures for the late transition metals Co and Ni but with the central benzene ring only partially bonded to each metal atom. Thus, the lowest-energy cobalt derivative has a trans-Bz(2)Co(2)(η(3),η(3)-μ-C(6)H(6)) structure in which the central benzene ring acts as a trihapto ligand to each metal atom. Similarly, the lowest-energy nickel derivative has a trans-Bz(2)Ni(2)(η(2),η(2)-μ-C(6)H(6)) structure in which the central benzene ring acts as a dihapto ligand to each metal atom, leaving an uncomplexed C═C double bond. The metal-metal bond orders in the singlet "rice-ball" structures cis-Bz(2)M(2)(μ-C(6)H(6)) (M = Mn, Fe) and the hapticities of the central benzene rings in the singlet late-transition-metal triple-decker-sandwich structures trans-Bz(2)M(2)(μ-C(6)H(6)) (M = Co, Ni) are governed by the desirability for the metal atoms to attain the favored 18-electron configuration.  相似文献   

15.
Photochemical decarbonylation of [Mo2Cp2(mu-PR*)(CO)4] (Cp = eta5-C5H5; R* = 2,4,6-C6H2tBu3) gives [Mo2Cp2(mu-kappa1:kappa1,eta6-PR*)(CO)2], which shows the first example of a remarkable 10-electron donor arylphosphinidene ligand which bridges two Mo atoms through its phosphorus atom while being pi-bonded to one Mo center through the six carbon atoms of the aryl ring. This causes a severe pyramidal distortion of the P-bound C atom. The complex adds CO to give [Mo2Cp2(mu-kappa1:kappa1,eta4-PR*)(CO)3], which has an 8-electron donor PR* ligand, and then the parent complex [Mo2Cp2(mu-PR*)(CO)4]. Protonation of [Mo2Cp2(mu-kappa1:kappa1,eta6-PR*)(CO)2] gives the hydride [Mo2Cp2(H)(mu-kappa1:kappa1,eta6-PR*)(CO)2]+, which undergoes P-C bond cleavage and hydride migration, affording the phosphido cation [Mo2Cp2(mu-P)(eta6-R*H)(CO)2]+.  相似文献   

16.
A series of carbenerhodium(I) complexes of the general composition [(eta5-C5H5)Rh(=CRR')(L)] (2a-2i) with R = R'= aryl and L = SbiPr3 or PR3 has been prepared from the square-planar precursors trans-[RhCl(=CRR')(L)2] and NaC5H5 in excellent yields. Reaction of the triisopropylsibane derivative 2a. which contains a rather labile Rh-Sb bond, with CO, PMe3, and CNR (R = Me, CH2Ph, tBu) leads to the displacement of the SbiPr3 ligand and affords the substitution products [(eta5-C5H5)Rh(=CPh2)(L)] (3-7). In contrast, treatment of the triisopropylphosphane compound 2c with CO and CNtBu leads to the cleavage of the Rh=CPh2 bond and gives besides [(eta5-C5H5)Rh(PiPr3)(L)] (10, 12) by metal-assisted C-C coupling diphenylketene Ph2C=C=O (11) or the corresponding imine Ph2C=C=NtBu (13). While the reaction of 2a, c with C2H4 yields [(eta5-C5H5)Rh(C2H4)(L)] (14, 15) and the trisubstituted olefin Ph2C=CHCH3 (16), treatment of 2a, c with RN3 leads to the cleavage of both the Rh-EiPr3 and Rh=CPh2 bonds and gives the chelate complexes [(eta5-C5H5)Rh(kappa2-RNNNNR)] (19, 20). The substitution products 3 (L=CO) and 4 (L= PMe3) react with an equimolar amount of sulfur or selenium by addition of the chalcogen to the Rh=CPh2 bond to generate the complexes [(eta5-C5H5)Rh(kappa2-ECPh2)(L)] (21-24) with thio- or selenobenzophenone as ligand. Similarly, treatment of 3 with CuCl affords the unusual 1:2 adduct [(eta5-C5H5)(CO)Rh(mu-CPh2)(CuCl)2] (25), which reacts with NaC5H5 to form [(eta5-C5H5)(CO)Rh(muCPh2)Cu(eta5-C5H5)] (26). The molecular structures of 3 and 22 have been determined by X-ray crystallography.  相似文献   

17.
A reaction mechanism was investigated for a ring-opening reaction of RP(E)-bridged [1]ferrocenophane, where RP(E) = PhP(S) (3a), PhP (3b), and MesP (3c) (Mes = 2,4,6-trimethylphenyl). Irradiation of UV-vis light in the presence of an excess amount of P(OMe)(3) transformed 3a to [Fe(PhP(S)(eta(5)-C(5)H(4))(eta(1)-C(5)H(4)))(P(OMe)(3))(2)] (4a), in which one of the two cyclopentadienyl (Cp) rings of 3a changed its coordination mode from eta(5) to eta(1) and vacant coordination sites thus formed on the iron center were occupied by two P(OMe)(3) ligands. The molecular structure of 4a was determined by X-ray analysis, in which eta(1)-Cp adopted a 1-Fe-2-P-1,3-cyclopentadiene structure. Under the same reaction conditions, 3b and 3c also gave similar ring-slipped products 4b and 4c, respectively. Photolysis of 3a using more strongly coordinating PMe(3) in place of P(OMe)(3) led to complete dissociation of a Cp ligand from the iron center to form [Fe(PhP(S)(eta(5)-C(5)H(4))(C(5)H(4)))(PMe(3))(3)] (5). The formation of the ring-slipped and -dissociated products on the photolysis of 3 strongly supports the view that photolytic ring-opening polymerization of 3 proceeds via an unprecedented Fe-Cp bond cleavage mechanism.  相似文献   

18.
The syntheses, characterization and X-ray crystal structures of the first two examples of asymmetrically bridged dinuclear copper(ii) complexes containing a ferrocenecarboxylato ligand and a methoxo group in [{Cu(dmen)}2(micro-OMe){micro-O2C(eta5-C5H4)Fe(eta5-C5H5)}](ClO4)2, 1, (dmen=N,N-dimethylethylenediamine) or an hydroxo group in [{Cu(tmen)}2(micro-OH){micro-O2C(eta5-C5H4)Fe(eta5-C5H5)}](ClO4)2, 2 , (tmen=N,N,N'N'-tetramethylethylenediamine) are reported. Magneto-chemical studies revealed that 1 and 2 exhibit opposite superexchange interactions between the two Cu(II) paramagnetic centers: an antiferromagnetic coupling (J = -11 cm(-1)) in 1 and a ferromagnetic interaction (J = +29 cm(-1)) in 2. The results obtained from these studies suggest that the weak interactions between the Cu(II) ions and the perchlorate anions detected in the crystal structures are important to introduce significant distortions in the heterobridged [Cu2(micro-OR){micro-O2C(eta5-C5H4)Fe(eta5-C5H5)}]2+ cores of 1 and 2, which clearly affect the nature and strength of the superexchange interactions. Computational studies based on density functional theory and ab initio multiconfigurational second-order perturbation theory (CASPT2) calculations have also been performed in order to rationalize the magnetic behaviour of 1 and 2. The magneto-structural correlations for complexes containing the [Cu(micro-OR)(micro-O2CR')Cu] core are discussed, and the relevance of the out-of-plane angle of the R group with the Cu(micro-OR)Cu plane established.  相似文献   

19.
Protonation of [Mo2Cp2(mu-H)(mu-PHR*)(CO)4] (Cp = eta5-C5H5, R* = 2,4,6-C6H2tBu3) with HBF4.OEt2 gives the hydridophosphinidene complex [Mo2Cp2(mu-H)(mu-PR*)(CO)4]BF4, which is easily deprotonated with H2O to give the known phosphinidene complex [Mo2Cp2(mu-PR*)(CO)4] in 95% yield. Reaction of the latter with I2 gives the unsaturated phosphinidene complex [Mo2Cp2I2(mu-PR*)(CO)2], which exhibits an intermetallic distance of 2.960(2) A. Irradiation of solutions of [Mo2Cp2(mu-PR*)(CO)4] with UV light gives a mixture of the triply bonded [Mo2Cp2(mu-PR*)(mu-CO)2] and the hydridophosphido derivative [Mo2Cp2(mu-H){mu-P(CH2CMe2)C6H2tBu2}(CO)4] as major species. The latter complex results from an intramolecular C-H bond cleavage from a tBu group and has been characterized by spectroscopy and an X-ray study. Irradiation in the presence of HCC(p-tol) results in the insertion of the alkyne into the Mo-P bond to give [Mo2Cp2{mu-eta1:eta2,kappa-C(p-tol)CHPR*}(CO)4] structurally characterized through an X-ray study.  相似文献   

20.
The isomers [Mo2Cp2(mu-kappa(1):kappa(1),eta(6)-PR*)(CO)2] (1) and [Mo2Cp(mu-kappa(1):kappa(1),eta(5)-PC5H4)(CO)2(eta(6)-HR*)] (2) (Cp = eta(5)-C5H5; R* = 2,4,6-C6H2(t)Bu3) react with [AuCl(THT)] and with the cation [Au(THT)2](+) (THT = tetrahydrothiophene) to give phosphinidene-bridged Mo2Au complexes resulting from the addition of an AuCl or Au(THT)(+) electrophile to their multiple P-Mo bonds. Removal of the Cl(-) or THT ligand from these derivatives causes a dimerization of the trinuclear structures to give the cationic derivative [{AuMo2Cp(mu3-kappa(1):kappa(1):kappa(1),eta(5)-PC5H4)(CO)2(eta(6)-HR*)}2](2+), which displays a novel H-shaped metal core held by strong Mo-Au dative bonds [2.768(1) A] and an aurophilic interaction [Au-Au = 3.022(1) A].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号