首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
用挥发油提取器提取橡苔浸膏中的挥发油 ,利用气相色谱 -质谱法 ( GC- MS)分析了其中的化学成分 ,采用GC峰面积归一化法定量 ,鉴定出 2 4种化合物 ,共占挥发油总量的 83%以上  相似文献   

2.
建立固相萃取结合气相色谱氢火焰离子化检测器(GC–FID)测定霜膏类化妆品中的芳香烃矿物油(MOAH)的方法。样品用无水乙醇分散,正己烷提取,经氟罗里硅土和中性氧化铝复合固相萃取柱净化,RIPP柱富集,采用GC–FID进行检测,最后对MOAH的谱图进行积分,根据FID检测器对烃类化合物的响应特点,选择适合的化合物作为内标物计算样品中MOAH的含量。结果表明,用苯并(α)芘作为MOAH的内标物,对基线和"驼峰"之间的色谱峰总面积减去非MOAH部分的尖峰面积进行MOAH的半定量,用该方法对霜膏类化妆品进行6次加标平行试验,平均回收率为77.7%,测定结果的相对标准偏差为25.8%。该方法操作简单、快速,适用于霜膏类化妆品中MOAH的检测。  相似文献   

3.
孙逊运 《色谱》1988,6(6):334-339
热离子化检测器(Thermionic detector,简称TID)作为气相色谱选择性检测器已有二十多年的历史。它对含氮、磷和卤素等有机化合物的检测限可达1×10~(-3)gX/sec,对磷的选择性高达1×10~2gP/gC。如此高的灵敏度和选择性已引起了色谱界对TID的普遍重视,尤其在分析痕量氮磷化合物或氮磷化合物与样品中其他组分分离不太好的情况下,使用TID有其独到之处。目前,国内外生产的大多数气相色谱仪都可装配热离子化检测器,其使用范围已涉及到医学、医药、临  相似文献   

4.
建立了全二维气相色谱-飞行时间质谱/氢火焰离子化检测器(GC×GC-TOF MS/FID)对煤直接液化循环溶剂(CDLRS)定性定量的分析方法。采用TOF MS和FID两种检测器同时采集数据,并结合谱库检索、标准物质保留值对照、谱图解析、标准质谱图对照、全二维谱图特征以及提取化合物分子离子等定性方法,将TOF MS检测数据定性,然后将定性的烃类化合物以z值分类法分为18类;应用Chroma TOF数据处理软件将TOF MS数据的定性分类结果应用到FID的检测数据中,对TOF MS和FID采集的数据色谱峰面积归一化处理,实现CDLRS的半定量分析。GC×GC/FID定量结果显示:煤直接液化循环溶剂中饱和烃和芳烃分别占45.805%、53.938%,其中饱和烃主要为二环烷烃及三环烷烃,含量依次为14.644%、18.021%;芳烃主要为一环烷苯和二环烷苯,含量依次为19.759%、16.528%。该方法为CDLRS的定性定量提供了一种有效的分析方法。  相似文献   

5.
93号汽油样品组分的GC-MS分析   总被引:12,自引:0,他引:12  
采用气相色谱-质谱法(GC—MS)在DB-5石英毛细管柱上对93号汽油样品进行了分析,检出94种组分;用归一化法进行定量,分析了其中的烯烃化合物,对于汽油生产中控制和降低汽油中烯烃含量有较好的实际意义。  相似文献   

6.
对于一般量的硫化氢和二氧化硫等含硫化合物的气相色谱分析已屡有报导。对于复杂组分的气体混合物,必须使所有组分全分离或找到仅对硫有响应的选择性检测器才能分析。火焰光度检测器是对硫有良好选择性的一种检测器,样品在富氢的火焰中燃烧,其含硫成分以S_2的形式放射出394毫微米的特征光,灵敏度可达10_(-10)克/秒,能符合微量分析的要求。但是固定液的选择也是很重要的,有不少固定液可以满足此要求,例如硅油和聚苯醚  相似文献   

7.
田文卿  李继文  王川 《色谱》2017,35(11):1204-1209
采用纯硅胶柱固相萃取技术对甲醇制烯烃副产汽油或甲醇制汽油产物进行预处理,将产物中的含氧化合物与烃类进行色谱分离,采用质谱鉴定产物中的含氧化合物。使用标准溶液优化纯硅胶小柱的洗脱条件,比较预处理方法的回收率,考察预处理方法的重复性。结果表明,标准溶液的各含氧化合物组分回收率为87.7%~95.3%。采用气相色谱-火焰离子化检测器(GC-FID)通过内标法对实际样品中除甲醇和乙醇外的含氧化合物进行定量分析,使用丁酮、叔戊醇、戊酮和己酮的响应因子作为同碳数醛、酮、醇的FID响应因子,定量甲醇制烯烃副产汽油和甲醇制汽油产物中的含氧化合物。对于甲醇和乙醇,采用GC-MS分析提取特征离子用外标法定量。结果表明,甲醇制烯烃副产汽油和甲醇制汽油产物中的含氧化合物以酮类、醛类为主,并有少量的醇类。  相似文献   

8.
采用水蒸气蒸馏法提取茵陈中挥发性成分挥发油,用气相色谱–质谱联用技术(GC–MS)对茵陈挥发油成分进行分析鉴定,并采用峰面积归一化法测定其相对含量。共检出52种挥发性成分,鉴定了其中31种主要挥发性成分,含量较高的组分为石竹素(15.27%)、(–)-斯巴醇(6.64%)、石竹烯(4.89%)等。GC–MS法适用于茵陈挥发性成分的定性分析,具有灵敏度高、分析速度快的特点。  相似文献   

9.
依据JJG 700–1999《气相色谱仪检定规程》介绍气相色谱仪检定装置的使用方法。检定项目包括载气流速稳定性、柱箱温度稳定性和程序升温重复性、衰减器换挡误差以及检测器的灵敏度。给出了热导检测器(TCD)、火焰离子化检测器(FID)、火焰光度检测器(FPD)、电子俘获检测器(ECD)和氮磷检测器(NPD)检定时的色谱条件及使用注意事项。正确使用气相色谱仪检定装置能保证仪器测量数据的准确可靠。  相似文献   

10.
化工废水排污沟底泥中多种有机污染物的气相色谱分析   总被引:1,自引:0,他引:1  
赵德仁  龙凤山  郎佩珍 《色谱》1986,4(4):252-254
为测定某化工废水排污沟底泥中多种有机污染物,建立了气相色谱(GC)分析方法。GC测定用电子俘获检测器(ECD)及火焰电离检测器(FID)两种检测器。每种检测器测定时均用两个极性不同的色谱柱分离、定性,结果较为可靠。比较了底泥样品三种不同提取方法的效果。所提供方法操作  相似文献   

11.
Li W  Wu D  Chen S  Peng H  Guan Y 《Journal of chromatography. A》2011,1218(38):6812-6816
The structure of the surface ionization detector (SID) and the operation parameters of GC-SID were investigated to reduce peak tailing and to enhance sensitivity. The performances of the GC-SID, including its repeatability, linearity, sensitivity, selectivity, and tolerance towards water vapor, were evaluated systematically. Compared with nitrogen-phosphorus detector (NPD), the SID was able to detect fg level triethylamine, and selectively respond to alkylamines, some anilines, and some nitrogen heterocyclic compounds. Among alkylamines, the SID sensitivity to diisobutylamine was rather small. Even so, it was also still 10 times higher than that on NPD. The SID selectivity, defined as the sensitivity ratio between triethylamine and various tested non-nitrogen compounds, was higher than 10(6). It was found that the SID is highly tolerant towards water vapor, allowing direct injection of water sample. Finally, the GC-SID was applied to directly measure trace amines in headspace gases of rotted meat and trace simazine in tap water. The SID sensitivity to simazine was proven to be 5 times higher than that on flame ionization detector (FID). This study suggests that the SID is a promising GC detector.  相似文献   

12.
This paper describes a novel method for the detection of compounds that do not contain nitrogen or phosphorus by a thermionic nitrogen-phosphorus specific detector (NPD), which normally detects only nitrogen- or phosphorus-containing compounds. This method allows for the calibration of gas chromatographic columns with NPD detectors using n-alkanes instead of nitrogen-containing drug mixtures. This results in a more rapid and accurate calibration for the calculation of relative retention indices (RRI), such as Kováts indices, than was previously possible when employing an NPD detector. The proposed method describes the temporary conversion of the NPD detector into a detector with properties much like a flame ionization detector. After a deliberate increase in the hydrogen gas flow rate to the thermionic bead from 4 ml/min to 8 ml/min, the n-alkanes (containing no nitrogen) can be detected and used as RRI calibrators. Once the column has been calibrated, the hydrogen gas flow rate is lowered to the normal rate of 4 ml/min. The detector then behaves as a normal NPD, no longer detecting the n-alkanes.  相似文献   

13.
Abstract

The response behavior and performance characteristics of the recently introduced barrier discharge ionization detector (BID) for gas chromatography (GC-BID) were investigated by analyzing different classes of organic compounds such as alcohols, alkanes, cycloaliphatic compounds, polycyclic aromatic hydrocarbons (PAHs), and others. The results obtained by GC-BID were compared with those of gas chromatography with flame ionization detection (GC-FID), aiming to demonstrate the particular merits of the new BID detector over the well-established FID. The response of the BID not only was found to be strongly dependent on the detector settings, but also shows a high dependence on the analyte class and the individual analyte. The sensitivity of the BID detector compared to the FID was higher by a factor of ca. 4 on average when considering all compounds analyzed. The relative standard deviation (RSD) was better than 5% for the majority of the cases. The BID detector showed better precision (lower RSD) in comparison with the FID for the investigated compounds. Linear calibrations were obtained for the analytes over more than four orders of magnitude with coefficients of determination typically higher than 0.999 and the limits of detection varied from 0.04 to 1.48?ng/s for the GC-BID.  相似文献   

14.
Abstract

In the present study, an efficient method for extraction, separation and determination of a limited number (30) of polar pesticides in aqueous matrices has been developed. Pesticides were extracted with high recoveries (usually >85%) from 1 L water samples, using the solid-phase extraction (SPE) technique. Affinities to different SPE materials (C-18 and XAD resins) have been studied for all pesticides. Special attention has been paid to the following 5 pesticides (which have classified by the EC as compounds which are particularly difficult to analyse): benazolia, bromofenoxim, ethofumesate, fenamiphos and phenmediphain. Thermally labile compounds have been determined with high pressure liquid chromatography (HPLC) and UV detection in comparison to TSP-LC-MS. Absolute limits of detection (LODs) for the HPLC technique are usually below 1 ng at 220 nm. Thermospray LC-MS determination shows usually limits of detection of 1-10 ng (SCAN) and 60-800 pg (SIM). All pesticides, which are amenable to GC have been detected in a comparative study with the following detectors: flame ionization detector (FID), nitrogen-phosphorus detector (NPD), electron capture detector (ECD) and atomic emission detector (AED). Element-specific detection of various functional groups of these pesticides has been achieved using GC-AED. Thus, while the FID has the lowest specificity, the AED is the most specific detector. LODs are usually < 300 pg (FID < 20 pg, NPD < 1 pg, ECD < 1 pg, AED < 300 pg). Spiked river water samples (from the River Leine and River Weser in Lower Saxony, Germany) have been used to test the employed method. With the spiked surface water samples recoveries were usually >80%.  相似文献   

15.
A miniaturized pulsed discharge detector (Mini-PDD) has been successfully demonstrated for comprehensive 2-D GC (GC x GC) analysis of pyrolysis gasoline and the pyrolysis GC x GC analysis of a polyethylene copolymer. The detector cell volume of the Mini-PDD is reduced to 25% of the Valco plug-in PDD D-3. An n-C11 peak width at base is 96 ms for the Mini-PDD, about 23% larger than a peak width of 78 ms detected by a flame ionization detector (FID). The Mini-PDD has sufficient response time for most GC x GC applications. When Mini-PDD is operated in helium photoionization mode (Mini He-PDD), it is a universal detector for both inorganic and organic compounds. This is especially useful when detection of water is needed in GC x GC applications. When krypton is doped in the helium discharge gas (Mini Kr-PDD), it can suppress signals of compounds having higher ionization potentials and enhance relative signal intensities of aromatic compounds. The determination of aliphatic to aromatic hydrocarbon ratios is essential to the operation of petroleum crackers. Comparison of the signal from two modes of the Mini-PDD is a simple and fast way to verify the location of aromatics in comprehensive 2-D gas chromatograms.  相似文献   

16.
Summary The selectivities of two flame-based ionization detectors identified as a Remote FID (RFID) and a Flame Thermionic Ionization Detector (FTID) have been improved by introducing methane as a fuel for the flame. Both the RFID and FTID feature a detector struture in which the ionization polarizer and collector are located several centimeters downstream of an oxygen-rich flame, rather than immediately adjacent to the flame as in a flame ionization detector. The RFID detects long-lived negative ions produced in the flame by the combustion of lead, tin, phosphorus, or silicon compounds. The FTID re-ionizes and detects neutral electronegative products generated by combustion of nitrogen, halogen, or phosphorus compounds. An organic-fuelled RFID can detect 1 pg Pb (Sn, P)/sec with a selectivity of the order of 106 versus hydrocarbons. An organic fuelled FTID is applicable to detection of compounds at nanogram and higher levels. FTID selectivity for PCB compounds in a transformer oil matrix is of the order of 1051. The improved selectivity achieved by using an organic-fuelled flame is also applicable to the detection of phospholipid and other non-volatile N, P, or Cl compounds using an FID/FTID detector accessory for a TLC/FID analyser.  相似文献   

17.
李长秀 《色谱》2017,35(5):551-557
利用中心切割技术和双毛细管色谱柱系统,采用两次进样的方式,建立了气相色谱测定车用汽油中含氧化合物和苯胺类化合物的分析方法。第一次进样分析,组分首先进入非极性DB-1色谱柱(30 m×0.32 mm×1.0μm),按沸点由低到高的顺序分离,通过电磁阀切换将沸点小于2-己酮的组分切割至强极性GS-OxyPLOT色谱柱(10 m×0.53 mm×10μm)或CP-Lowox色谱柱(10 m×0.53 mm×10μm),其余重烃组分通过阻尼柱进入FID检测器。在GS-OxyPLOT或CP-Lowox色谱柱上,烃类组分与含氧化合物分离并进入检测器检测,消除了大量的烃类组分对含氧化合物测定的影响。第二次进样分析,设定电磁阀切换时间为间-甲基苯胺从非极性色谱柱流出的时间,苯胺类化合物在GS-OxyPLOT或CP-Lowox色谱柱上与烃类和含氧化合物分离并进入检测器检测。以乙二醇二甲基醚为内标化合物进行内标法定量。实现了在一套系统上同时测定车用汽油中添加的甲基叔丁基醚(MTBE)、甲醇、甲缩醛、乙酸仲丁酯、乙酸乙酯、苯胺、邻/间/对-甲基苯胺和N-甲基苯胺的含量,各组分的检测范围为0.01%~10%(质量分数),回收率为86.0%~102.6%。该法可以为车用汽油的质量控制提供有效的检测手段。  相似文献   

18.
The effect of using ammonia as a carrier gas on the response of the flame ionization detector (FID) has been investigated. It was found that the FID response, calculated as the effective carbon number (ECN), increased for all the compounds studied when ammonia, rather than helium, was used. The change was 0–0. 9 carbon atom for hydrocarbons, one carbon atom for alcohols and diphenyl ether, and 0.4–1 carbon atom for phenols and ketones. The increase in ECN was larger for amines (0. 8–5 carbon atoms), but these numbers also reflected an improvement in chromatographic performance as a result of reduced adsorption on the column. The largest change in signal-to-noise ratio, a six-fold increase, was obtained for octyl-amine; ratios for hexyl methyl ketone, diisobutyl ketone, dihexyl-amine, dibutylamine, and N-methyloctylamine increased by a factor of 2–3 when ammonia was used as carrier gas. To determine the extent to which the effect on detector response was solely attributable to ammonia, a mixture of 5 % ammonia in nitrogen was used as detector make-up gas with helium as carrier gas. Under these conditions the noise in the FID increased but for most of the compounds studied the signal-to-noise ratio also increased.  相似文献   

19.
An analytical procedure is described for the fractionation of organic compounds present in environmental samples and the determination of nitro polyaromatic hydrocarbons (nitro-PAHs). Both low and high resolution liquid chromatography are employed for the prefractionation of the soluble organic fraction (SOF) extracted from particulate matter or gaseous pollutants collected on adsorption traps. High resolution gas chromatography is used to analyze four fractions containing alkanes, PAHs, nitro-PAHs, and other polar PAHs. Nitrogen-containing species are separated by GC and detected specifically using an alkali flame (NPD) detector. Flame ionization (FID) detection, GC-MS of positive ions, and negative ion chemical ionization MS of the whole fraction is used for the identification and quantitation of the various components. The composition of SOF extracted from particulate matter emitted from diesel exhausts is elucidated and a large number of nitro-PAHs identified by the combination of the various techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号