首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
恒电位组装的硫醇单层膜的电化学性质   总被引:2,自引:0,他引:2  
采用恒电位组装的方法在金基底上制备了十二硫醇单层膜,用反射傅立叶红外光谱、循环伏安法和电化学阻抗谱对得到的硫醇膜进行了表征.结果表明,恒电位组装1 min即可在金基底上形成没有针孔缺陷的硫醇单层膜.随着恒电位组装时间的增加,硫醇膜上的凹陷点缺陷逐渐减少,致密程度逐渐增加.当恒电位组装时间达到5 min时,得到的硫醇膜与自组装24 h的硫醇膜具有相当的致密度和更少的凹陷点缺陷.  相似文献   

2.
刁鹏  侯群超  梅岗  张琦 《化学学报》2006,64(3):213-217
利用金基底电位变化时硫醇自组装膜的吸脱附性质, 通过改变基底电位和组装溶液, 用电化学方法在金基底上实现了传统自组装技术难以实现的硫醇分子的替换组装; 通过金基底的分区化设计, 用控制电位的组装技术在基底的不同微区内制备了不同末端官能团的硫醇及其衍生物自组装膜; 并在此基础上实现了纳米粒子的区域化组装.  相似文献   

3.
硫醇在金电极上的SA单分子层膜的电化学研究   总被引:14,自引:0,他引:14  
金基底上的硫醇自组装单分子层膜(Self-asembledmonolayers,SAMs)具有良好的稳定性和有序性,因此在基础研究及应用技术等领域都受到了广泛的重视[1].通过电化学方法测定自组装膜对溶液中电活性物质的异向电子转移的阻碍作用.  相似文献   

4.
用电化学聚合法在多种烷基硫醇自组装膜修饰金电极上制备了聚吡咯.通过计时安培法、循环伏安法和交流阻抗技术研究了自组装膜的烷基链长和端基功能团对吡咯聚合过程和性质的影响.当自组装膜较完美时,聚吡咯沉积在自组装膜表面;而当自组装膜有一定缺陷时,吡咯在针孔处成核,然后继续生长并完全覆盖在自组装膜表面.研究结果表明,烷基硫醇的链越短,吡咯聚合越容易;疏水的烷基硫醇自组装膜有利于聚吡咯在电极表面的生长.  相似文献   

5.
本文综述了金表面上硫醇自组装的影响因素研究进展,包含表面预处理、电位控制、外加超声、微波和磁场、金属离子欠电位沉积和组装方式等几个方面。通过金表面上硫醇自组装影响因素的总结探讨,对硫醇单层的快速可控与重现构建具有重要的指导意义。  相似文献   

6.
用循环伏安法分别测定了金电极表面L-半胱氨酸(L-Cys)和十二硫醇自组装单分子层的电化学行为, 实验发现虽然单层结构排列致密, 但并不能有效地阻碍铁氰化钾与电极间异相电子转移过程, 同时观察到十二烷基硫醇自组装层能较好地阻碍电子转移作用. 运用表面增强拉曼散射光谱技术, 以十二烷基硫醇作为缺陷探针, 从分子水平上证实了L-半胱氨酸自组装单层的稳定性和致密性.  相似文献   

7.
膜电阻对自组装膜修饰电极电化学行为的影响   总被引:4,自引:1,他引:3  
崔晓莉  江志裕 《电化学》2001,7(3):270-275
应用循环伏安和交流阻抗技术研究了 16烷基硫醇自组装膜修饰的金电极在Fe(CN) 63 - /Fe(CN) 64 - 溶液中的电化学行为 .无“针孔”缺陷的自组装膜对溶液与基底间的界面电子转移具有强烈的阻碍作用 ,当过电位较大时 ,In(I/ η)对 η1/2 之间具有良好的线性关系 .通过对Au/SAM /Hg模拟体系的电流———电压曲线进行测定 ,得到了自组装膜膜电阻的特征 .指出由于膜电阻的存在 ,自组装膜修饰电极在Fe(CN) 63 - /Fe(CN) 64 - 溶液中的行为实质上反映了膜自身的电阻特征  相似文献   

8.
为了寻求新的自组装单分子膜体系,构建新的功能膜,研究了具备平面型的大环共轭硒杂环化合物-- 4,5-苯并苤硒脑(苯并[c]硒二唑,简称苤硒脑)在金表面的自组装单分子膜.通过X射线光电子能谱(XPS)和电化学手段对其进行表征.XPS研究结果表明,自组装形成单分子膜后,苤硒脑分子中Se3d结合能从57.4 eV下降到57.1 eV;表明硒杂环化合物是通过金硒键固定在金表面上的;电化学循环伏安法实验表明,金电极表面上自组装该有机硒后, Fe(CN)63-/4-的氧化还原峰几乎完全消失;以四硼酸钠为底液,测得该化合物自组装在金表面上时,其还原电位在-0.66 V,与在溶液中用裸金电极测得的还原峰电位基本一致.  相似文献   

9.
席夫碱自组装单分子膜的电化学行为   总被引:6,自引:0,他引:6  
利用自组装技术将席夫碱硫醇衍生物在金表面形成自组装单分子膜,并初步研究了此自组装单分子膜的电化学行为,发现该席夫碱分子在0.1 mol•L-1的KCl溶液中具有电化学不可逆氧化还原行为,且随着自组装时间的增加表观电极反应速率常数值显著减小,最后减小为0,并对此进行了解释.  相似文献   

10.
铁表面自组装缓蚀功能膜的电化学阻抗谱研究   总被引:2,自引:0,他引:2  
在铁表面自组装十四烷基胺膜.研究该膜在0.5 mol/LH2SO4溶液中对铁的缓蚀性能.电化学阻抗谱测试表明,随着组装时间的延长,缓蚀性能也随之增强,最大缓蚀效率为68.7%.而以十二烷基硫醇和十四烷基胺修饰的混合膜则更为致密、稳定,对铁的缓蚀能力也明显优于仅以十二烷基硫醇或十四烷基胺修饰的单一膜,其缓蚀效率可提高至78.2%.  相似文献   

11.
Adlayers were formed on self-assembled monolayers (SAMs) formed by alkanethiols on gold. Base SAMs exposing amide functional groups at the SAM surface were formed with 12-mercaptododecanamide. Adlayers of diacetylene-containing monomers were then formed via amide hydrogen bonding in decalin and decalin/toluene mixtures. Grazing angle FTIR, contact angle measurements, and ellipsometry suggest that these adlayer films exhibit ordering and packing similar to that of SAMs on gold. Resonance Raman spectroscopy showed that these diacetylene adlayers could be readily polymerized by exposure to UV light.  相似文献   

12.
The attachment of cells onto solid supports is fundamental in the development of advanced biosensors or biochips. In this work, we characterize cortical neuron adhesion, growth, and distribution of an adhesive layer, depending on the molecular structure and composition . Neuronal networks are successfully grown on amino-terminated alkanethiol self-assembled monolayer (SAM) on a gold substrate without adhesion protein interfaces. Neuron adhesion efficiency was studied for amino-terminated, carboxy-terminated, and 1:1 mixed alkanethiol SAMs deposited on gold substrates. Atomic force microscopy and X-ray photoelectron spectroscopy were used to measure the roughness of gold substrate and thickness of SAM monolayers. Conformational ordering and ionic content of SAMs were characterized by vibrational sum frequency generation (VSFG) spectroscopy. Only pure amino-terminated SAMs provide efficient neuronal cell attachment. Ordering of the terminal amino groups does not affect efficiency of neuron adhesion. VSFG analysis shows that ordering of the terminal groups improves with decreasing surface roughness; however the number of gauche defects in alkane chains is independent of surface roughness. We monitor partial dissociation of carboxy groups in mixed SAMs that implies formation of NH3+ neighbors and appearance of catanionic structure. Such catanionic environment proved inefficient for neuron adhesion. Surface roughness of metal within the 0.7-2 nm range has little effect on the efficiency of neuron adhesion. This approach can be used to create new methods that help map structure-property relationships of biohybrid systems.  相似文献   

13.
Functional solid substrates modified by self-assembled monolayers (SAMs) have potential applications in biosensors, chromatography, and biocompatible materials. The potential-induced phase transition of N-isobutyryl-L-cysteine (L-NIBC) SAMs on Au (111) surfaces was investigated by in-situ electrochemical scanning tunneling microscopy (EC-STM) in 0.1 mol·L-1 H2SO4 solution. The NIBC SAMs with two distinct structures (α phase and β phase) can be prepared by immersing the Au (111) substrate in pure NIBC aqueous solution and NIBC solution controlled by phosphate buffer at pH 7, respectively. The as-prepared α phase and β phase of NIBC SAMs show various structural changes under the control of electrochemical potentials of the Au (111) in H2SO4 solution. The α phase NIBC SAMs exhibit structural changes from ordered to disordered structures with potential changes from 0.7 V (vs saturated calomel electrode, SCE) to 0.2 V. However, the β phase NIBC SAMs undergo structural changes from disordered structures (E < 0.3 V) to γ phase (0.4 V < E < 0.5 V) and finally to the β phase (0.5 V < E < 0.7 V). EC-STM images also indicate that the phase transition from the β phase NIBC SAMs to the α phase occurs at positive potential. Combined with density functional theory (DFT) calculations, the phase transition from the β phase to the α phase is explained by the potential-induced break of bonding interactions between ——COO- and the negatively charged gold surfaces.  相似文献   

14.
Self-assembled monolayers (SAMs) of glucose derivatives on gold have been prepared from alpha- and beta-glucopyranosylamide derivatives. The glucosyl conjugates were synthesized stereoselectively via the in situ generation of glucosyl isoxazolines followed by treatment with thiopyridyl esters. The resulting film structures were characterized by atomic force microscopy, reflection Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The experimental data indicated that alpha- or beta-linked glucopyranosylamide derivatives with free hydroxyl groups attach to gold via the thiol linker. Both derivatives form monolayer films with high packing densities--comparable to those typically observed for alkanethiol monolayers on gold. Acetate analogues of these conjugates do not form SAMs on gold; they form multilayered films under identical deposition conditions.  相似文献   

15.
We report the formation and characterization of self-assembled monolayers (SAMs) based on dialkyldithiophosphinic acid adsorbates {[CH(3)(CH(2))(n)](2)P(S)SH (n = 5, 9, 11, 13, 15)} on gold substrates. SAMs were characterized using X-ray photoelectron spectroscopy, reflection-absorption infrared spectroscopy, contact angle measurements, and electrochemical impedance spectroscopy. Data show that there is a roughly 60:40 mixture of bidentate and monodentate adsorbates in each of these SAMs. The presence of monodentate adsorbates is due to the numerous and deep grain boundaries of the underlying gold substrate, which disrupt chelation. Comparing the characterization data of dialkyldithiophosphinic acid SAMs with those of analogous n-alkanethiolate SAMs shows that both SAMs follow a similar trend: The alkyl chains become increasingly organized and crystalline with increasing alkyl chain length. The alkyl groups of dialkyldithiophosphinic acid SAMs, however, are generally less densely packed than those of n-alkanethiolate SAMs. For short alkyl chains (hexyl, decyl, and dodecyl), the significantly lower packing densities cause the alkyl chains to be liquid-like and disorganized. Long-chain dialkyldithiophosphinic acid SAMs are only slightly less crystalline than analogous n-alkanethiolate SAMs.  相似文献   

16.
Nanoporous gold (npAu) was employed as high surface area substrate for immobilization of redox- and photooxidative-active organic molecules. A two-step synthetic routine is demonstrated as a versatile and robust method for immobilization of various molecules. First, self-assembled monolayers (SAMs) of thiols containing an azide moiety were prepared on npAu substrates. Then, alkyne-modified ferrocene, tetrathiafulvalene, and zinc(II)phthalocyanine derivatives were covalently bound via the click reaction to this linker. Following the provided synthetic procedures high performance composite materials are generated for electrochemistry and photochemistry. The robust bonding between the organic functional group and the gold support provides stability even under strongly oxidizing conditions (applied potential or singlet oxygen).  相似文献   

17.
高源  徐国华  安越 《物理化学学报》2010,26(8):2211-2216
从Helmholtz模型出发,对生长在金表面不同链长烷基硫醇自组装单分子膜(SAM)表面电势的变化规律进行了理论研究.利用量子化学软件Gaussian03和MOPAC,讨论了分子偶极矩、相对介电常数以及分子的倾斜角对SAM表面电势的影响.研究表明,不同链长烷基硫醇SAM中分子的倾斜角随烷基链长度的规律性变化是引起SAM表面电势变化的主要原因.从SAM形成机制出发,对金表面不同链长烷基硫醇SAM表面电势的变化规律及其成因提出了新的解释.  相似文献   

18.
A set of oligo(ethylene glycol)-terminated and globotriose-terminated self-assembled monolayers (SAMs) has been prepared on gold substrates. Such model surfaces are well defined and have good stability due to the strong binding of thiols and disulfides to the gold substrate. They are thus very suitable for addressing questions related to effects of surface composition on wetting properties, surface interactions, and surfactant adsorption. These issues are addressed in this report. Accurate wetting tension measurements have been performed as a function of temperature using the Wilhelmy plate technique. The results show that the nonpolar character of oligo(ethylene glycol)-terminated SAMs increases slightly but significantly with temperature in the range 20-55 degrees C. On the other hand, globotriose-terminated SAMs are fully wetted by water at room temperature. Surface forces measurements have been performed and demonstrated that the interactions between oligo(ethylene glycol)-terminated SAMs are purely repulsive and similar to those determined between adsorbed surfactant layers with the same terminal headgroup. On the other hand, the interactions between globotriose-terminated SAMs include a short-range attractive force component that is strongly affected by the packing density in the layer. In some cases it is found that the attractive force component increases with contact time. Both these observations are rationalized by an orientation- and conformation-dependent interaction between globotriose headgroups, and it is suggested that hydrogen-bond formation, directly or via bridging water molecules, is the molecular origin of these effects.  相似文献   

19.
Self-assembly of aliphatic as well as aromatic thiol-terminated molecules was achieved onto a variety of gold surfaces using aqueous micellar solutions. Scanning tunneling microscopy experiments allowed us to demonstrate that the increase in the density of self-assembled monolayers (SAMs) prepared from micellar aqueous solvent compared to that prepared from ethanol directly originates from the decrease in defect density in the SAM (etch pits, domain boundaries) and not from a denser local packing of the molecules. Extending the use of such an aqueous solvent to various conjugated molecules, we report for the first time the insertion of these molecules from an aqueous solution in a dodecanethiol (DT) SAM and the ligand-exchange on the surface of DT stabilized gold nanoparticles deposited as a Langmuir-Blodgett film. Finally, we show that aqueous micellar DT solutions allow the preparation of DT SAMs on gold through a micropatterned resist mask. These results make possible the use of water to deliver molecules on a solid substrate to build molecular devices in a way compatible with lithography requirements in microelectronic processes.  相似文献   

20.
Alkylphosphate self-assembled monolayers (SAMs) were prepared on Nb-doped SrTiO(3) (Nb-STO) conducting metal oxide substrates. Unlike thiols on gold, the alkylphosphate SAMs on Nb-STO exhibited an electrochemical stability over a wide voltage range from -2 to 2 V. Cyclic voltammetry showed that the SAM modification inhibited the electrochemical activity of the underlying conducting substrate with an efficiency dependent on the chain length. Impedance spectroscopy showed that SAM-modified Nb-STO substrates have a significantly higher resistance than bare substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号