首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
反相悬浮法制备AA-AM共聚耐盐高吸水性树脂   总被引:7,自引:0,他引:7  
唐宏科  陈均志 《合成化学》2004,12(3):293-296
对反相悬浮法制备丙烯酸 (AA)和丙烯酰胺 (AM)二元共聚高吸水性树脂的工艺进行了研究。实验表明 ,该工艺的最佳条件为 :AA 2 0g( 2 80mmol) ,n(AA)∶n(AM +AA) =0 .6 ,交联剂N ,N 亚甲基双丙烯酰胺的用量为单体总质量的 0 .2‰ ,引发剂过硫酸钾的用量为单体总质量的 0 .6‰ ,聚合温度 6 5℃ ,聚合时间 1.5h。AA -AM的吸水率为 12 5 0g·g-1,吸盐水率为 14 0g·g-1。  相似文献   

2.
以硫酸铵(AS)水溶液为反应介质、聚乙烯吡咯烷酮(PVP)为分散剂进行丙烯酰胺(AM)与丙烯酸(AA)的分散聚合,制备了阴离子型聚丙烯酰胺(APAM).研究了硫酸铵浓度、单体配比、体系pH和分散剂PVP用量等对聚合产物特性黏数、溶解时间、聚合分散液的表观黏度的影响.得到优化条件:w(AS)=0.26,w(PVP)=0.04,m(AM)/m(AA)=4,pH=6.5.利用傅里叶红外光谱和光学显微镜对所合成的分散液进行了结构表征和形态分析,表明生成的产物是微球表面较光滑的APAM分散液.  相似文献   

3.
以丙烯酸(AA)为单体,EDTA二钠为改性添加剂,过硫酸铵(APS)/亚硫酸钠为氧化还原型引发剂,N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,采用水溶液聚合法合成EDTA改性高吸水树脂。发现使用改性添加剂EDTA二钠能够使改性高吸水树脂的吸附铜离子性能明显增强。通过正交实验和单因素实验进行条件优化,得出改性高吸水树脂对重金属铜离子吸附性能最佳的工艺条件为:以15 mL的丙烯酸为基准,反应温度为65℃,单体质量分数为23.08%,中和度为65%,改性添加剂质量为0.4 g,交联剂和引发剂质量分别为聚合单体质量的0.9%和1.5%。在最佳工艺条件下,制备的改性高吸水树脂常温下在0.1mol·L~(-1)的硫酸铜溶液中吸附铜离子量达到225.18 mg·g~(-1)。  相似文献   

4.
以丙烯酰胺(AM)、丙烯酸(AA)、(1-二甲氨基)-烯丙基磷酸(DMAAPA)和N-烯丙基油酰胺(CON)为原料,制备了一种水溶性磷酸盐共聚物AM/AA/DMAAPA/CON。确定了最佳合成条件:AM:AA:DMAAPA:CON=69.6:30.0:0.2:0.2(wt%)、pH=7、引发剂加量为0.2 wt%、单体浓度20 wt%、聚合反应温度40℃。对共聚物进行了IR和NMR表征。该聚合物表现出较好的增粘性、抗剪切、耐温和耐盐性能;0.8 wt%的共聚物溶液防膨率达到80.12%,与1.0 wt%的KCl复配后,防膨率达到96.54%。  相似文献   

5.
以十八醇为原料,制备长链疏水单体N-十八烷基丙烯酰胺(OAM)。以丙烯酰胺(AM)、丙烯酸(AA)、二甲基二烯丙基氯化铵(DMDAAC)、N-十八烷基丙烯酰胺(OAM)为单体,通过胶束聚合法合成了水溶性疏水缔合两性四元共聚物。利用FT-IR、1HNMR、DTA-TG对聚合物的结构和热稳定性进行分析,考察了疏水基团摩尔分数、聚合物浓度对聚合物溶液表观粘度、储能模量、耗能模量等流变性能的影响,并对四元共聚物溶液的性能进行评价。结果表明,疏水两性共聚物具有很好的耐温、抗盐、耐剪切等优异性能。  相似文献   

6.
SiO_2气凝胶负载磷钨酸催化四氢呋喃聚合反应的研究   总被引:1,自引:0,他引:1  
采用等体积浸渍法制备了SiO2气凝胶负载磷钨酸(HPW)催化剂,利用BET、XRD、NH3-TPD、FT-IR、Py-IR对催化剂结构及表面性质进行了表征.将催化剂应用于四氢呋喃(THF)聚合反应,考察了HPW负载量、聚合时间、聚合温度等条件的影响.结果表明:在负载量50%,反应温度50℃、反应时间4 h条件下,反应收率达53%,聚合物数均分子量2000左右,可用作纺织、化工等领域的生产原料.  相似文献   

7.
氧化钙和氟化钾负载高岭土固体碱催化制备新型生物柴油   总被引:1,自引:0,他引:1  
以高岭土为载体,利用浸渍法制备了氧化钙和氟化钾负载高岭土固体碱(GCK);利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(FT-IR)和哈密特指示剂法等技术手段对催化剂进行表征;考察了KF负载量和反应条件对月桂酸甲酯(ML)与乙二醇单甲醚(EGME)酯交换反应制备新型生物柴油产率的影响。 结果表明,GCK碱强度(H_)在7.2~18.4之间,KCaF3为主要活性组分,当氟化钾负载量为25%、EGME与ML摩尔比3.0、催化剂用量相对于ML的质量分数为4.5 %、120 ℃下反应2 h,新型生物柴油的收率高达97.1%。 最后对催化剂的重复利用性能进行了考察。  相似文献   

8.
通过丙烯酰胺(AM),丙烯酸(AA),烯丙醇聚氧乙烯醚(APEG)和N,N-二烯丙基苄胺(NANB)制备共聚物P(AM/AA/APEG/NANB)。确定了最佳反应条件:m(AM)∶m(AA)=6.5∶3,APEG为5 wt%,NANB加量0.2 wt%,pH为7,反应温度40℃,引发剂0.4 wt%。通过IR和1H NMR确定了聚合物的分子结构,并对其进行性能测试。结果表明:2000 mg·L-1的AM/AA/APEG/NANB溶液具有较好的流变性能(120℃,粘度保留率:38.56%;1000 s-1,粘度保留率:17.93%)和抗盐性能(20 000 mg·L-1Na Cl,2000 mg·L-1Mg Cl2或Ca Cl2,粘度保留率分别为22.14%、18.34%和15.33%),且提高采收率可达16.12%。  相似文献   

9.
以过硫酸钾(KPS)为引发剂、十二烷基硫酸钠(SDS)为乳化剂,利用正相乳液聚合制备(甲基丙烯酸甲酯-co-丙烯酸)共聚物(P(MMA-co-AA))乳液.通过测定聚合转化率和观察聚合过程稳定性,探讨了AA与MMA不同质量比时制备稳定的共聚物乳液的工艺条件;通过黏度法测定了乳液在不同pH时的相对黏度η,利用粒度分析仪分析了乳胶粒子在不同pH时的平均粒径和粒径分布.结果表明:AA含量较高时,控制聚合时间是得到稳定聚合物乳液的关键,当m(AA)/m(MMA)=12.5/100,65 ℃下反应120 min时,所制得的乳液稳定性最好.随着pH增大,乳液黏度先增大后降低;随着m(AA)/m(MMA)增加,制得的乳液pH敏感性增大;随着乳液从酸性(pH=5.17)变到碱性(pH=8.61),聚合物乳胶粒子平均粒径减小,粒径分布变窄.  相似文献   

10.
以丙烯酰胺(AM),丙烯酸(AA)和埃洛石(AL)为原料,环己烷(CYH)为油相,Span 60为分散剂,过硫酸铵(APS)为引发剂,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,经反相悬浮聚合法制备了聚丙烯酰胺-埃洛石复合型高吸水性树脂(1ηγ-ALTa),其结构经SEM表征。考察了单体质量比η[m(AM)∶m(AA)],油水体积比γ[V(油)∶V(水)],MBA用量和ALTa用量[T为煅烧温度,a为酸化浓度]对1ηγ-ALTa吸水性能的影响。在最佳反应条件[Span 60 1.2 g,CYH 154 m L,MBA 12 mg,AM 5.0 g,η=0.5,γ=3.5,AL90015225 mg,APS 0.12 g,于70℃反应3 h]下制备的10.53.5-AL90010吸水性能最好,吸水倍率,吸盐水倍率和溶胀速率分别为1 740.34 g·g-1,246.36 g·g-1和29.0 g·min-1。  相似文献   

11.
以丙烯酰胺(AM),丙烯酸(AA),N,N-二烯丙基-3-吡啶甲酰胺(DANA)和N-烯丙基辛酰胺(AOCA)为单体,采用过硫酸铵-亚硫酸氢钠((NH_4)_2S_2O_8-NaHSO_3)氧化还原引发体系合成了一种新型水溶性四元共聚物AM/AA/AOCA/DANA。确定了最佳反应条件:m(AM)/m(AA)=6:4、DANA=0.16 wt%,AOCA=0.15wt%、pH值7、引发剂0.3 wt%、单体浓度20 wt%、聚合温度50℃。通过红外、核磁氢谱、环境扫描电镜以及特性粘数对AM/AA/AOCA/DANA进行了结构表征。该聚合物较部分水解聚丙烯酰胺相比具有明显的抗温(100℃,粘度保留率:31.55%)抗剪切(1000 s~(-1),粘度保留率:32.31%)以及抗盐性能(11000 mg·L~(-1)NaCl,粘度保留率:41.77%;1500 mg·L~(-1)MgCl_2,粘度保留率:39.83%;1500 mg·L~(-1)CaCl_2,粘度保留率:34.81%;);驱油实验表明该聚合物较水驱相比能够提高原油采收率达12.04%。  相似文献   

12.
选取玉米秸秆为原料, 经过缺氧炭化制备玉米秸秆生物炭, 并以聚乙烯亚胺(PEI)负载于生物炭表面, 制备PEI功能化秸秆生物炭, 研究了其对水中Cr 6+的吸附性能和机理. 结果表明, 在吸附剂添加量相等条件下, PEI碱性生物炭(PBC)对Cr 6+的吸附效率明显高于PEI酸性生物炭(HBC)和原始生物炭(CBC). PBC对水中Cr 6+的最大吸附量为386.3 mg/g, 吸附平衡时间为300 min; 当pH=2.0左右时, 对Cr 6+的吸附效率最大达到95.94%. 因此, PBC可作为一种高效去除水中Cr 6+的吸附剂.  相似文献   

13.
以二苄基三硫代碳酸酯(DBTTC)为可逆加成-断裂链转移剂(RAFT试剂),槲皮素(Quercetin)为印迹化合物,分别以甲基丙烯酸(MAA)、丙烯酰胺(AM)、丙烯酸(AA)、4-乙烯基吡啶(4-VP)和2-乙烯基吡啶(2-VP)作为功能单体,利用可逆加成-断裂链转移自由基聚合法制备了槲皮素分子印迹聚合物.实验考察了不同的制备条件,利用氮吸附测试及扫描电子显微镜对聚合物的结构进行了测定,采用色谱法对印迹聚合物的识别能力及分离效率进行了评价.研究了聚合条件-聚合物结构-分离效率的关系,探讨了利用活性自由基合成分子印迹聚合物的方法及特点;并将合成的分子印迹聚合物用作固定相,对维药祖卡木颗粒中的槲皮素进行了分离富集.研究结果表明,通过活性自由基聚合法合成的分子印迹聚合物具有更好的形态结构,对目标分子具有很好的吸附效率.  相似文献   

14.
由乙二胺和马来酸酐制备了新型树枝状功能单体(EDMA),在此基础上由丙烯酰胺(AM)、丙烯酸(AA)、N-乙烯基吡咯烷酮(NVP)和EDMA合成了新型树枝状水溶性四元共聚物AM/AA/NVP/EDMA。通过红外光谱及核磁共振氢谱对AM/AA/NVP/EDMA四元共聚物进行了表征。探讨了共聚物的粘浓关系和耐温、抗剪切性能和提高采收率能力。结果表明,在相同质量浓度下共聚物的增粘效应远大于HPAM;在90℃的高温条件下,5000mg·L-1的共聚物溶液的粘度为881.0 mPa·s;经过500s-1的高剪切速率剪切2min后溶液粘度为807.0mPa·s;岩心驱替实验表明在70℃下,注入0.3PV 1500 mg·L-1共聚物溶液后转注水至含水率为98%,提高采收率为17.7%。  相似文献   

15.
生物炭基复混肥缓释特性研究   总被引:1,自引:0,他引:1  
以油茶壳、稻壳为原料,利用连续热解装置分别在400℃、500℃进行热解,制备油茶壳炭和稻壳炭,将生物炭与尿素、磷酸氢二钾以及自制的淀粉胶黏剂不同比例混合进行挤压造粒,制备了多种生物炭基复混肥,研究不同配比的生物炭基复混肥的缓释特性,发现稻壳炭基复混肥尿素缓释性能优于油茶壳炭基复混肥,500℃热解的稻壳炭与尿素、磷酸氢二钾比例为7∶1.5∶1.5时缓释性能最佳。本研究为开发新型环境友好型缓释复混肥提供了新的方法和视角。  相似文献   

16.
草酸改性空气凤梨生物炭吸附甲醛的机理研究   总被引:1,自引:0,他引:1  
探究草酸改性园林废弃物类生物炭对溶液中甲醛的吸附效率和固定的机理,为园林废弃物类生物炭在甲醛污染控制方面的应用提供科学依据。利用马弗炉在低氧条件下将空气凤梨原材料和草酸改性后的原材料制备成生物炭。然后利用实验室模拟法,研究不同反应时间、甲醛浓度、pH对生物炭吸附效果的影响,并分析草酸改性如何提高园林废弃物类生物炭对甲醛的吸附性能。(1)生物炭对乙酰丙酮和酚试剂两种甲醛检测方法的精度有影响,对乙酰丙酮检测法的影响较小;(2)相比于未改性生物炭,草酸改性通过酸化分解杂质能够使改性生物炭比表面积提高约17倍,孔隙体积增加195.9%;(3)草酸改性后生物炭对甲醛的吸附量为11.6 mg g-1,比未改性生物炭提高了12.95%,并且在60 min时趋于吸附平衡的状态;(4)Boehm滴定法表明草酸改性能够显著提高制备后生物炭上的官能团(羧基51.8%,羰基13.7%和内酯基35.9%),但酚羟基(4.5%)含量增加不明显,而相关性分析证实比表面积、羧基和内酯基官能团的增加是提高生物炭吸附甲醛的主要因素。实验证明,空气凤梨制备成生物炭用于溶液中甲醛的吸附是可行的,并且草酸改性能够进一步通过官能团提高其吸附能力,这为园林废物资源化利用提供了新的思路。  相似文献   

17.
以丙烯酰胺(AM)、丙烯酸(AA)、N-烯丙基苯乙酰胺(NAPA)及N-甲基-N-烯丙基吗啉溴盐(NMQS)为原料,氧化还原体系下合成了一种水溶性两性离子共聚物AM/AA/NAPA/NMQS。最佳反应条件为:m(AM):m(AA)=4.0:6.0,NAPA 0.3 wt%,NMQS 0.15 wt%,引发剂0.1 wt%,pH=6,反应温度35℃,单体总浓度25wt%。对AM/AA/NAPA/NMQS四元共聚物进行了IR、1H NMR、SEM、特性粘数表征。当NaCl浓度为12000mg·L-1,CaCl2或MgCl2浓度为1200 mg·L-1时,溶液黏度保留率分别为13.7%、11.8%和12.7%;温度120℃时,溶液黏度保留率达到30.9%;当剪切速率在170 s-1时,溶液黏度保留率为24.6%。  相似文献   

18.
以水为分散介质,过硫酸钾为引发剂,丙烯酰胺(AM),丙烯酸钠(AA)和甲基丙烯酸缩水甘油酯(GMA)为单体进行三元共聚,利用酰胺基和环氧的加成反应得到原位自交联高吸水性树脂P(AA-AM-GMA),其结构经IR表征。在GMA 30 mmol,n(AM)∶n(AA)∶n(GMA)=10∶82∶8,引发剂占单体质量0.533%,80℃反应3.5 h的最佳反应条件下,P(AA-AM-GMA)的吸水能力最佳,达629倍。  相似文献   

19.
咪唑型阳离子聚丙烯酰胺P(AM/MAPD)的合成   总被引:1,自引:0,他引:1  
以丙烯酰胺(AM)、自制的1-(2-甲基丙烯酰氧丙基)-3-癸基咪唑盐酸盐(MAPD-Cl)为原料,通过自由基共聚合,得到了咪唑型阳离子聚丙烯酰胺P(AM/MAPD)。 红外光谱表征结果证明其为目标产物。 采用单因素考察和响应面分析法相结合,对聚合工艺条件进行了优化。 优化聚合条件为:单体总质量分数25.41%,反应温度26 ℃,引发剂(NaHSO3-(NH4)2S2O4)质量分数0.03%,反应时间10 h。 所得聚合物的特性粘数可达到12.56 dL/g。  相似文献   

20.
介孔二氧化硅负载磷钨杂多酸催化合成聚四氢呋喃   总被引:1,自引:0,他引:1  
采用浸渍法制备了介孔二氧化硅(SiO2)负载的磷钨杂多酸(PW12)催化剂(PW12/SiO2),其物化性质和表面酸强度经BET,IR,TG-DTG和Hammett指示剂法表征.以PW12/SiO2催化四氢呋喃开环聚合合成聚四氢呋喃(PTHF),考察了PW12的负载量[w(PW12)]和焙烧温度对催化剂活性的影响.实验结果表明,在w(PW12)为35.0%,于230 ℃焙烧活化3 h的条件下制备的催化剂(35Cat)活性最高.以35Cat为催化剂,用量占反应物总质量的15.0%时,PTHF收率达60.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号