首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
化学   5篇
  2024年   1篇
  2020年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
近年来,光催化裂解水产氢(H2)引起了广泛的关注.储量丰富,环境友好的非金属无机半导体β-SiC(立方相碳化硅)具有适当的带隙(Eg=2.4 eV,ECB=?0.9 V),是一种潜在的光催化剂.受限于SiC光催化剂内部光生电子-空穴对的快速复合,SiC光催化剂的效率较低.已有的关于SiC光催化剂改性的报道主要包括构建纳米SiC,构建SiC异质结,构建碳/SiC材料杂化材料.进一步的研究表明,SiC与碳材料之间通过紧密的界面接触形成了肖特基结,能将SiC表面的光生电子快速转移,抑制光生电子-空穴对的快速复合,从而提高光催化分解水产氢的活性.另一方面,碳纳米管(CNTs)具有良好的电子导电性,一维有序的管腔所形成的电子快速传导路径.因此,将半导体光催化剂与CNTs复合,是一种制备先进的光催化剂的有效策略.本文利用Si蒸气与CNTs之间的气-固反应,在CNTs表面原位生长SiC纳米包覆层,成功地制备了一维同轴核-壳CNTs@SiC纳米管.高分辨率透射电子显微镜图像表明,SiC与CNTs之间是通过Si-C共价键原子接触,并得到X射线光电子能谱的证实.将一部分CNTs@SiC纳米管在空气中750 oC煅烧2 h以除去CNTs,得到纯SiC纳米颗粒作为对比组.紫外-可见吸收光谱表明,CNTs能够促进SiC对光的吸收.荧光发射光谱(PL),瞬态荧光寿命测试,瞬态光电流测试以及交流阻抗(EIS)测试表明,CNTs能够促进SiC表面光生电子的传输与分离,有利于提升光催化效率.以0.1 mol/L Na2S溶液作为牺牲剂,在模拟太阳光(A.M 1.5)照射下,CNTs@SiC纳米管(不额外负载Pt等贵金属作为助剂)的产氢速率为118.5μmol g^-1 h^-1,是纯SiC纳米颗粒(21.1μmol g^-1 h^-1)的5.62倍.经过20 h的光照测试,CNTs@SiC纳米管的光催化性能无明显衰减;X射线衍射测试与扫描电子显微镜图像表明,CNTs@SiC纳米管的结构与形貌反应前后几乎无变化.莫特-肖特基测试表明,CNTs的费米能级比SiC低,因此SiC表面的光生电子能够快速地转移到CNTs,并且CNTs的良好导电性与一维有序的管腔所形成的长的电子传导路径能够进一步地增加电子寿命,促进光生电子参与光催化反应.另外,通过原子连接的同轴核-壳CNTs@SiC纳米管提供了大量且有效的电子传输路径.因此,与纯SiC纳米晶等同类材料相比,无机非金属CNTs@SiC纳米管具有更强的光催化氢活性.  相似文献   
2.
根据农业院校“新农科”建设需要的人才培养目标和化学类人才培养要求,开设“以油茶壳为原料制备吸附剂并用于抗生素废水的净化”综合研究性实验项目。通过本项目,学生可充分掌握与化学、材料和环境相关的多门课程内涉及的环境材料制备、结构表征、性能分析、环境污染评价等关键知识点,培养学生的创新意识、科研能力和团队协作能力,激发学生的环保意识和社会责任感。  相似文献   
3.
为了拓展农业院校应用化学和材料化学专业高年级学生的学科视野,提高化学实验课程的高阶性、创新性和挑战度,通过科教融合,设计了一个创新性实验—利用汉麻废弃物制备多孔氮掺杂生物炭及对四环素吸附性能。实验内容包括氮掺杂多孔生物炭的制备、形貌结构和性质表征、吸附性能和稳定性的测试以及吸附动力学拟合与机理探索等。该实验具有化学、材料学与农业科学和生物科学相结合的特点,创新性强、操作简便,可供同类高校的同行借鉴。将农林废弃物的回收利用的科研成果应用于教学实践,可以突出专业特色,提升化学类专业学生的科技创新思维、环境保护意识和综合实践能力。  相似文献   
4.
以水为分散介质,过硫酸钾为引发剂,丙烯酰胺(AM),丙烯酸钠(AA)和甲基丙烯酸缩水甘油酯(GMA)为单体进行三元共聚,利用酰胺基和环氧的加成反应得到原位自交联高吸水性树脂P(AA-AM-GMA),其结构经IR表征。在GMA 30 mmol,n(AM)∶n(AA)∶n(GMA)=10∶82∶8,引发剂占单体质量0.533%,80℃反应3.5 h的最佳反应条件下,P(AA-AM-GMA)的吸水能力最佳,达629倍。  相似文献   
5.
后交联法合成高吸水性树脂   总被引:1,自引:0,他引:1  
高琼芝  王正辉 《合成化学》2005,13(4):401-402
以过硫酸钾为引发剂,水为分散介质,丙烯酸钠(AANa)与甲基丙烯酸缩水甘油酯(GMA)共聚得到共聚物P(AANa-GMA),然后用乙二胺(EDA)使氧杂环开环发生交联反应,制得高吸水性树脂。其结构经^1H NMR和IR表征。用茶袋法研究了EDA用量对树脂吸水能力的影响。结果表明,当n(EDA):n(GMA)=1.0:1.4时,树脂的吸水倍率达527倍。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号