首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
毛细管离子交换电色谱的分离行为   总被引:7,自引:0,他引:7  
魏伟  胡平 《分析化学》1997,25(10):1132-1137
在离子交换毛细管色谱柱上实施电色谱,并对其分离行为进行了研究,采用75μm(i.d.)20cm的毛细管强阳离子交换柱(3μm)以NaH2PO4-H3PO4缓冲液为淋洗剂,紫外柱上检测(214nm)考察了流动相的pH值,有机改性剂及分离电压等因素对分离的影响,研究表明,不同的pH溶质的流出次序发生改变,随着有机改性剂含量增加,溶质的保留时间减小,而电渗流却增大,同时,对分离的柱效和方法的重现性进行了  相似文献   

2.
硅胶填充柱反相洗脱毛细管电色谱研究   总被引:1,自引:0,他引:1  
魏伟  闫超 《分析化学》1998,26(3):287-290
在75μm(i.d.)×27/20cm的硅胶(3μm)填充柱上,以乙腈(95:5)-Tris/HCl缓冲液(pH8.3)为流动相,实施毛细管电色谱并对其保留机理进行了研究。研究表明,当采用反相洗脱时,硅胶填充柱显示出阳离子交换和正相分配双重保留机理。同时还对电渗流和热效应进行了研究。  相似文献   

3.
关燕华  魏伟 《分析化学》1998,26(4):396-400
在75μm×20cm的毛细管ODS填充柱上实现毛细管反相电色谱分离,考察种种分离因素,包括流动相的组成,有机相的种类和比例,电解质缓冲液的种类浓度和PH值,以及分离电压和分离温度等因素对填充毛细管电渗流的影响,系统研究了反相毛细管电色谱的电渗变化规律。  相似文献   

4.
高效细内径毛细管电色谱填充柱的制备   总被引:6,自引:1,他引:5  
施维  邹汉法  张津  董礼孚  张玉奎 《色谱》1996,14(5):351-353
发展了一套毛细管填充柱制备方法,在100μm内径毛细管柱中填充3μmODS固定相,以毛细管电色谱法(CEC)分离模式对芳香胺类样品进行分离,柱效高达25.9万理论塔板数/米,折合塔板高度达1.3。类似研究在国内尚未见报道。  相似文献   

5.
张金兰  周同惠 《色谱》2000,18(5):420-422
 采用简便易行的方法自制内径为100 μm的电色谱柱,并考察了其性能,同时研究了磷酸盐缓冲液浓度、乙腈体积分数、电压、柱温对中性化合物保留行为的影响。  相似文献   

6.
考察不同内径的毛细管电色谱柱中分离电压对电渗流的影响,在不同内径的毛细管电色谱柱中,电渗流与电压都呈较好的线性关系,与毛细管电色谱柱的内径无关,由于焦耳热的影响,在电压变化幅度较大的情况下,电渗流与电压的关系曲线呈线性弯曲,在大内径毛细管电色谱柱上更加明显。  相似文献   

7.
利用溶胶-凝胶(Sol-Gel)技术制备了混合烷基开管毛细管电色谱柱(C8-C13OT-CEC),并考察了其电渗流行为和电色谱性能。研究了流动相中甲醇含量对芳香族中性化合物保留的影响。发现C8-C18OT-CEC柱体现反相分配机理。5种芳香族化合物和4种苯同系物在C8-C13OT-CEC柱上分离良好,同时还考察了分离电压和柱内径对柱效的影响,结果表明高的电压和较小的柱内径能提高柱效。  相似文献   

8.
张民权 《色谱》1996,14(5):346-350
将大容量水样(500μL至5mL)注射到并保持在Nafion管内,用逆流氮气将扩散穿过Nafion管的水蒸气带走。将所得的样品气流引到50μm内径的开口管毛细管柱内。柱头热解吸调制器对所接受的样品的均匀调制得到浓度脉冲,一个脉冲产生一组色谱图,通过对这样一系列的快速色谱图的信号平均比能得到特殊的多重气相色谱图─—整体样品色谱图。热解吸调制器是通过将导电涂料涂到50μm的分析柱的前端5.0cm一段而制得的。施加到导电薄膜上的电流脉冲将调制器段及其内部的固定相加热,释放出作为浓度脉冲的保留物质。  相似文献   

9.
以甲基丙烯酸丙酯基三甲氧基硅烷(MPTMS)为单体,甲苯为致孔剂,偶氮二异丁腈(AIBN)为引发剂,盐酸为催化剂,采用热引发法制备毛细管电色谱硅胶整体柱.在反相毛细管电色谱条件下,对中性化合物硫脲,苯,萘,芴,蒽实现了基线分离了.柱效超过100,000 plates/m.探讨了该柱的制备条件如单体比例,毛细管内径,制柱反应时间对分离的影响,并且在电色谱条件下考察了有机溶剂比例,pH值,电压和温度对分离的影响.  相似文献   

10.
魏伟  王义明  罗国安  周玉华  尤慧燕  闫超 《色谱》1998,16(6):520-522
在3μm氰基键合固定相上实施毛细管电色谱,采用乙腈/Tris反相洗脱,在75μmi.d.×25cm的毛细管柱上分离了几种芳香化合物,并对其保留行为进行了研究。利用溶剂特征显色比较法对溶质的保留进行了预测。同时还研究了乙腈的比例对电渗流的影响。对于不保留的溶质,获得了小于2.0的折合塔板数。  相似文献   

11.
Methacrylate-ester-based monoliths containing quaternary ammonium groups were prepared in situ in capillary columns and in simultaneous experiments in vials, employing thermal initiation. The chromatographic properties of the monoliths were determined with capillary electrochromatography (CEC), and their morphology was studied with mercury-intrusion porosimetry on the bulk materials. Materials with different, well repeatable pore-size distributions could be prepared. A satisfactory column-to-column and run-to-run repeatability was obtained for the electro-osmotic mobility, the retention characteristics (k-values) and the efficiency on the columns prepared and tested in the CEC mode. A relatively high electro-osmotic flow was observed in the direction of the positive electrode. The electro-osmotic mobility was found to be influenced only marginally by mobile-phase parameters such as the pH, ionic strength, and acetonitrile content. The retention behavior of the monolithic columns was similar to that of columns packed with C18-modified silica particles. Columns could be prepared with optimum plate heights ranging from 6 microm for unretained compounds to 20 microm for well retained (k=2.5) polyaromatic hydrocarbons. However, for specific analytes a - still unexplained - lower chromatographic column efficiency was observed.  相似文献   

12.
A new method to separate diazepam, nitrazepam, estazolam, alprazolam was established on both C18 and C8 CEC columns. The influence of separation voltage, Tris concentration, column temperature and the percentage of acetonitrile on the resolution and retention behavior of four benzodiazepines was investigated. The results showed that the percentage of acetonitrile had the largest effect on the resolution and retention behavior of the four benzodiazepines. Other separation conditions had also effects on the resolution and retention behavior, but smaller than the concentration of acetonitrile. Optimum separation conditions were obtained to separate four benzodiazepines on C18 and C8 CEC columns.  相似文献   

13.
A test system has been established to permit the monitoring of the life-time performance of several reversed- phase capillary electrochromatography (CEC) columns. The retention factors, k(cec), peak symmetry coefficients, lambda(sym), and column efficiencies, N, of three neutral n-alkylbenzene analytes, namely ethyl-, n-butyl- and n-pentylbenzenes, were determined for Hypersil 3 microm n-octylsilica and n-octadecylsilica packed into CEC capillary columns of 100 microm I.D., with a packed length of 250 mm, and a total length of 335 mm. The performances of these CEC capillary columns were examined for a variety of eluents with pH values ranging between pH 2.0 - 8.0, similar to those employed to study the retention behaviour of peptides that we have previously reported. The relative standard deviation (RSD) of the retention factors (k(cec) values) of these n-alkylbenzenes, acquired with an eluent of (25 mM Tris-HCl, pH 8.0,)-acetonitrile (1:4, v/v), when the CEC capillary columns were used for the first time (virgin values), were 4% (based on data acquired with 4 CEC capillary columns) for the n-octyl bonded silica capillary columns, and 6% (based on 8 columns) for n-octadecyl bonded silica capillary columns. The RSD values of the k(cec) values of the n-alkylbenzenes for one set of replicates (n=6) with one CEC capillary column was < 0.5%. The theoretical plate numbers, N, for the virgin CEC capillary columns were ca. 60,000, whilst the observed N values for all new CEC capillary columns were > or = 40,000 for n-octyl bonded silica capillary columns and > or = 50,000 for n-octadecyl bonded silica capillary columns. The peak symmetry coefficients, lambda(sym), of the n-alkylbenzenes for virgin CEC capillary columns and for CEC capillary columns used for more than 1,000 injections were always in the range 0.95-1.05. The experimental results clearly document that the life-time performance of the CEC capillary columns depends on the eluent composition, as well as the nature of the analytes to which the CEC capillary columns are exposed.  相似文献   

14.
For the separation of proteins and peptides by capillary electrochromatography (CEC), columns with a monolithic stationary phase were prepared from silanized fused-silica capillaries of 50 microm I.D. by in situ copolymerization of glycidyl methacrylate, methyl methacrylate and ethylene glycol dimethacrylate in the presence of propanol and formamide as porogens. The epoxide groups at the surface of the porous monolith were reacted with N-ethylbutylamine to form fixed tertiary amino functions with ethyl- and butyl-chains. A mixture of ribonuclease A, insulin, alpha-lactalbumin and myoglobin was separated isocratically by counterdirectional CEC with hydro-organic mobile phases containing acetonitrile and sodium phosphate buffer, pH 2.5. The separation of four angiotensin type peptides by CEC was also achieved under similar conditions. The elution order of proteins was similar to that obtained in reversed-phase chromatography. Plots of the migration factors for proteins and peptides against the acetonitrile concentration exhibit opposite trends. This is most likely due to the greater chromatographic retention and lower electrophoretic migration velocity of proteins than that of peptides in the counterdirectional CEC system. From this it is concluded that the separation is governed by a dual mechanism that involves the complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

15.
毛细管反相电色谱法分离行为的研究   总被引:7,自引:3,他引:4  
魏伟  王义明  罗国安 《色谱》1997,15(2):110-113
对乙睛-水-磷酸二氢销体系毛细管反相电色谱分离行为进行了研究。采用柱上紫外检测,在75μmi.d.×30cm的毛细管ODS(3μm)填充柱上获得了小于2.0的折合培板高度。同时还研究了乙睛的比例、电解质的浓度和电场强度等因素对电渗流和往效的影响。  相似文献   

16.
A new in-house designed and constructed injection valve for capillary electrochromatography (CEC) based on a rotating injection part with compartments for the eluent as well as for the sample has been coupled to a mass spectrometer via a sheath flow electrospray ionisation (ESI) interface, using short capillary columns of 15 cm length. The CEC columns were packed with 3 microm C(18) bonded silica particles, and a mixture of peptides was analysed using an ammonium acetate/acetonitrile eluent. A significant increase in the signal-to-noise ratio was obtained when the peptides were dissolved in water with the same content of organic modifier as in the eluent with an addition of 0.5% (v/v) acetic acid. When the CEC analysis was performed without any additional pressure, the separation current sometimes dropped tremendously due to bubble formation, caused by different permeability in the first and packed part of the column causing an extremely low electroosmotic flow. The separation current was restored to its original value by applying only 7 bar at the inlet of the CEC column, and the separation performance for the test peptides was recovered. A comparison of the CEC performance of peptides in pure CEC mode and in low-pressure CEC mode is reported.  相似文献   

17.
The retention behaviour and selectivity of selected basic, neutral and acidic peptides have been studied by capillary electroendoosmotic chromatography (CEC) with Hypersil C8, C18, Hypersil mixed-mode, and Spherisorb C18/SCX columns, 250 (335) mm x 100 microns, packed with 3 microns particles, and eluted with mobile phases composed of acetonitrile-triethylamine-phosphoric acid (TEAP) at pH 3.0 using a Hewlett-Packard Model HP3DCE capillary electrophoresis system. The selected peptides were desmopressin (D), two analogues (A and B) of desmopressin, oxytocin (O) and carbetocin (C). The peptides eluted either before or after the electroendoosmotic flow (EOF) marker, depending on the concentration of acetonitrile used and the buffer ionic strength. The retention and selectivity of these peptides under CEC conditions were compared to their behaviour in free zone capillary electrophoresis (CZE), where the separation mode was based on the electrophoretic migration of the analytes due to their charge and Stokes radius properties. In addition, their retention behaviour in RP-HPLC was also examined. As a result, it can be concluded that the elution process of this group of synthetic peptides in CEC with a TEAP buffer at pH 3.0 is mediated by a combination of both electrophoretic migration processes and retention mechanisms involving hydrophobic as well as silanophilic interactions. This CEC method when operated with these 3 microns reversed-phase and mixed-mode sorbents with peptides is thus a hybrid of two well-known analytical methods, namely CZE and RP-HPLC. However, the retention behaviour and selectivity of the selected peptides differs significantly in the CEC mode compared to the RP-HPLC or CZE modes. Therefore this CEC method with these peptides represents an orthogonal analytical separation procedure that is complimentary to both of these alternative techniques.  相似文献   

18.
Capillary electrochromatography (CEC) was employed as a rapid and high-efficiency method for the isocratic separation of all 20 important phenylthiohydantoin (PTH) amino acids, the end products of Edman degradation during N-terminal protein sequencing. For this purpose, 75 microm ID fused-silica capillaries were packed with standard 3 microm Hypersil octadecyl silica (ODS) particles using a two-step column fabrication process, which represents a fast, reliable and efficient means of producing long-term stable columns. The influence of solvent composition, pH, type of buffer cation, buffer concentration, and temperature on retention behavior of PTH amino acids was investigated. Same-day and day-to-day reproducibility of the retention times (over a period of two months) were found to be better than 3%. When comparing this new technique with traditional reversed phase-high performance liquid chromatography (RP-HPLC) methods applied in automated protein sequenators, CEC shows essentially shorter separation times and superior resolution.  相似文献   

19.
毛细管电色谱是在毛细管中依靠电渗流来驱动流动相 ,同时溶质与固定相发生相互作用的一种色谱分离模式 ,它有高效液相色谱的高选择性 ,同时兼具毛细管电泳的高效性 [1] .传统电色谱柱是将HPLC填料装入毛细管 ,但由于装柱困难且易产生气泡而在一定程度上阻碍了电色谱的发展 [2~ 4 ] .通过柱内合成的方法直接在毛细管中制成连续床毛细管电色谱柱 ,可避免两端烧塞 . 1 995年 Svec等 [5,6]首次将连续床层色谱柱用于毛细管电色谱 ,此后 ,有关毛细管中原位合成连续床电色谱柱的方法得到了应用 [7~ 11] .为了使原位合成电色谱柱能产生电渗流 ,…  相似文献   

20.
Microemulsion electrokinetic chromatography (MEEKC) coupled with a diode-array detector was developed for the simultaneous analysis of natural steroidal compounds, withanolides including withaferin A, withacnistin and iochromolide. Optimal resolution was obtained with a microemulsion consisting of 70 mM octane, 800 mM 1-butanol, 100 mM sodium dodecyl sulfate (SDS), and 10 mM phosphate-borate buffer (pH 7) using a fused-silica capillary at 25 kV and 40 degrees C. Since this technique is not compatible with mass spectrometry detection, a capillary electrochromatographic method was developed to separate the investigated withanolides. The effects of mobile phase composition and pH were systematically investigated. Complete separation was obtained with a capillary electrochromatography (CEC) Hypersil C18 bonded silica column (packed length, 25 cmx100 microm ID and 375 microm OD), packed with 3 microm particles. The mobile phase consisted of formic acid-ammonia, pH 8 / acetonitrile (40/60 v/v); the voltage was set at 25 kV and the temperature at 20 degrees C. Under these conditions, resolution of these closely related compounds, including the critical pair withacnistin and iochromolide, was achieved in less than 5 min. The separations by MEEKC and CEC were compared with that obtained by reversed-phase liquid chromatography and showed similar retention order, indicating the analogy of the retention mechanism of these techniques. To further improve specificity and sensitivity, the developed CEC method was interfaced with electrospray ionization mass spectrometry using a Teflon connection between the CEC column and a void fused-silica capillary. Finally, the described methods were applied to the qualitative analysis of withanolides in Iochroma gesnerioides plant extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号