首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
煤层气作为一种非常规天然气,既是宝贵的清洁能源,其主要成分甲烷同时也是一种主要的温室气体;煤层气的直接排放不仅加剧了大气温室效应和环境污染,同时也是能源资源的极大浪费.近年来,煤层气的治理和利用受到了广泛关注,有关技术研究和开发取得了很大进展.本文对近年来煤层气的治理和利用技术研发进展进行了总结和评估,侧重于介绍煤层气分离系统中关键的中、高浓度煤层气催化燃烧脱氧技术以及乏风瓦斯逆向流催化燃烧减排及余热利用技术.最后对煤层气综合利用技术进行了展望.  相似文献   

2.
我国煤层气组份、碳同位素类型及其成因和意义   总被引:8,自引:0,他引:8  
本文研究了我国14个煤矿和3口中深井煤层气的组份、甲烷碳同位素组成,发现煤矿煤层气大部分有变干变轻的特征,而中深井煤层气则没有此现象。我国原生带煤层气和从褐煤热模拟成煤作用获得的煤层气亦没有变干变轻。因此认为煤矿煤层气变干变轻是由于受到次生改造的结果。  相似文献   

3.
在发烟硫酸溶液中,对低浓度煤层气液相部分氧化的催化剂进行了筛选,考察了硫酸盐化合物系列、过渡金属化合物系列、碘化合物系列对低浓度煤层气液相部分氧化的催化活性,对筛选出的碘催化剂进行了催化剂加入量的考察,并对碘催化剂的催化机理进行了讨论。结果表明,碘单质的催化效果最好,低浓度煤层气中甲烷转化率可达79.69%,甲烷选择性可达83.74%。在对碘催化剂加入量的考察中发现,随着碘催化剂加入量的增加,低浓度煤层气的转化率先增加,达到最大值以后,再逐渐减小。根据甲烷在发烟硫酸溶液中液相部分氧化的反应机理,提出低浓度煤层气在发烟硫酸溶液中液相部分氧化的反应机理属于亲电反应机理。  相似文献   

4.
中国以甲烷为主要成分的煤层气资源丰富,但利用率却很低不到10%.由于未将煤矿矿井中的煤层气及时抽出,导致矿难频频发生,造成大量人员伤亡.……  相似文献   

5.
煤层气是储量十分丰富的煤炭伴生资源,也是煤炭开采中最大的安全隐患之一,同时还是重要的温室气体.研究煤层气的高效、清洁资源化利用具有资源和环境双重意义.因此,世界主要产煤国均十分重视煤层气的开发和利用.煤层气的主要成分是甲烷,目前主要通过两种方式实现其资源化利用:(1)直接转化,主要通过氧化偶联、催化氧化官能团化或脱氢芳构化等途径将其转化为高碳烃、含氧化合物及芳烃等;(2)间接转化,甲烷首先经催化重整反应制取合成气,而后再经Fischer-Tropsch合成、甲醇化和氢甲酰化等过程来合成饱和烃、烯烃、甲醇及其他含氧化物.对于前者,由于热力学限制,反应收率很低,应用前景较差,而经由合成气这一平台产物的间接转化路线被认为是一条甲烷资源化利用颇具工业前景的转化路线.因此,甲烷催化重整制合成气备受关注.研究表明,贵金属具有较好的甲烷重整催化性能,但其储量有限、价格昂贵的内在缺陷不利于甲烷大规模转化和资源化利用.Ni基催化剂具有与贵金属可比的催化活性和选择性,且其储量丰富,价格低廉,因此在甲烷重整反应中备受青睐.但是,相对于贵金属,Ni基催化剂易于积碳和烧结失活,这已成为制约其大规模工业化应用的瓶颈.迄今,大量文献报道关注如何提高Ni基催化剂的催化稳定性.而载体形貌调控是调节负载型催化剂的有效途径.本文开展了用作载Ni催化剂的氧化锆载体的形貌调控研究,以期可以有效调节载Ni催化剂的物化性质,进而调控载Ni催化剂的甲烷重整催化性能.采用水热法成功制备了松球状和鹅卵石状的单斜相氧化锆载体,进一步负载镍,制备了载镍催化剂,用于甲烷重整制合成气反应.具有分级结构的松球状氧化锆载Ni催化剂(Ni/ZrO_2-ipch)展示出比鹅卵石状氧化锆和常规氧化锆纳米粒子载Ni催化剂显著好的催化活性和稳定性.采用XRD、N_2吸附、TEM、H_2-TPR、CO化学吸附、CO_2-TPD、XPS和TGA等手段研究了松球状氧化锆载Ni催化剂高催化活性和稳定性的原因和机制.发现,其较高的催化活性主要归因于高的Ni分散度、改善的可还原性、促进的氧流动性以及较多的碱性位和较强的碱性,这些物化性质依赖于氧化锆载体的独特形貌.分级结构的松球状氧化锆载Ni催化剂高的甲烷重整催化稳定性主要源于催化剂的高抗烧结、抗积碳性能.加强的金属载体效应和介孔限域效应可以阻止金属Ni的高温烧结,而优良的抗积碳稳定性主要源于催化剂良好的氧流动性、较多的碱性位、较强的碱性以及小的Ni粒子尺寸.鉴于分级结构松球状氧化锆载Ni催化剂高的催化活性和优良的抗积碳、抗烧结稳定性,该催化剂用于甲烷重整制合成气具有广阔前景.而所制备的分级结构松球状氧化锆由于具有独特的结构和优良的热稳定性,可以作为性能优良的载体用于其他反应,尤其对于高温转化过程可望表现出明显优势.  相似文献   

6.
煤层气是储量十分丰富的煤炭伴生资源,也是煤炭开采中最大的安全隐患之一,同时还是重要的温室气体.研究煤层气的高效、清洁资源化利用具有资源和环境双重意义.因此,世界主要产煤国均十分重视煤层气的开发和利用.煤层气的主要成分是甲烷,目前主要通过两种方式实现其资源化利用:(1)直接转化,主要通过氧化偶联、催化氧化官能团化或脱氢芳构化等途径将其转化为高碳烃、含氧化合物及芳烃等;(2)间接转化,甲烷首先经催化重整反应制取合成气,而后再经Fischer-Tropsch合成、甲醇化和氢甲酰化等过程来合成饱和烃、烯烃、甲醇及其他含氧化物.对于前者,由于热力学限制,反应收率很低,应用前景较差,而经由合成气这一平台产物的间接转化路线被认为是一条甲烷资源化利用颇具工业前景的转化路线.因此,甲烷催化重整制合成气备受关注.研究表明,贵金属具有较好的甲烷重整催化性能,但其储量有限、价格昂贵的内在缺陷不利于甲烷大规模转化和资源化利用.Ni基催化剂具有与贵金属可比的催化活性和选择性,且其储量丰富,价格低廉,因此在甲烷重整反应中备受青睐.但是,相对于贵金属,Ni基催化剂易于积碳和烧结失活,这已成为制约其大规模工业化应用的瓶颈.迄今,大量文献报道关注如何提高Ni基催化剂的催化稳定性.而载体形貌调控是调节负载型催化剂的有效途径.本文开展了用作载Ni催化剂的氧化锆载体的形貌调控研究,以期可以有效调节载Ni催化剂的物化性质,进而调控载Ni催化剂的甲烷重整催化性能.采用水热法成功制备了松球状和鹅卵石状的单斜相氧化锆载体,进一步负载镍,制备了载镍催化剂,用于甲烷重整制合成气反应.具有分级结构的松球状氧化锆载Ni催化剂(Ni/ZrO2-ipch)展示出比鹅卵石状氧化锆和常规氧化锆纳米粒子载Ni催化剂显著好的催化活性和稳定性.采用XRD、N2吸附、TEM、H2-TPR、CO化学吸附、CO2-TPD、XPS和TGA等手段研究了松球状氧化锆载Ni催化剂高催化活性和稳定性的原因和机制.发现,其较高的催化活性主要归因于高的Ni分散度、改善的可还原性、促进的氧流动性以及较多的碱性位和较强的碱性,这些物化性质依赖于氧化锆载体的独特形貌.分级结构的松球状氧化锆载Ni催化剂高的甲烷重整催化稳定性主要源于催化剂的高抗烧结、抗积碳性能.加强的金属载体效应和介孔限域效应可以阻止金属Ni的高温烧结,而优良的抗积碳稳定性主要源于催化剂良好的氧流动性、较多的碱性位、较强的碱性以及小的Ni粒子尺寸.鉴于分级结构松球状氧化锆载Ni催化剂高的催化活性和优良的抗积碳、抗烧结稳定性,该催化剂用于甲烷重整制合成气具有广阔前景.而所制备的分级结构松球状氧化锆由于具有独特的结构和优良的热稳定性,可以作为性能优良的载体用于其他反应,尤其对于高温转化过程可望表现出明显优势.  相似文献   

7.
颗粒甲烷单加氧酶(pMMO)是甲烷氧化菌中催化甲烷氧化生成甲醇的一种酶.Methylococcus capsulatus IMV3021的pMMO活性位点是pmoB亚基,该亚基是一种可溶性蛋白.我们研究将pmoB亚基进行异源表达及生物催化活性的验证.当培养基中烟酰胺腺嘌呤二核苷酸(NADH)浓度为5 mmol/L时,可以观察到异源表达pmoB亚基具有催化甲烷氧化成甲醇活性,生成甲醇浓度为1.04 mmol/L.研究pMMO活性对于开发能直接将甲烷转化成甲醇的新型、环保催化剂有非常重要意义.  相似文献   

8.
张铁男 《分子催化》2016,30(2):177-181
颗粒甲烷单加氧酶(pMMO)是甲烷氧化菌中催化甲烷氧化生成甲醇的一种酶.Methylococcus capsulatus IMV 3021的pMMO活性位点是pmoB亚基,该亚基是一种可溶性蛋白.我们研究将pmoB亚基进行异源表达及生物催化活性的验证.当培养基中烟酰胺腺嘌呤二核苷酸(NADH)浓度为5 mmol/L时,可以观察到异源表达pmoB亚基具有催化甲烷氧化成甲醇活性,生成甲醇浓度为1.04 mmol/L.研究pMMO活性对于开发能直接将甲烷转化成甲醇的新型、环保催化剂有非常重要意义.  相似文献   

9.
低浓度甲烷流向变换催化燃烧的研究   总被引:12,自引:3,他引:9  
甲烷在煤矿工业中被称作为瓦斯,在富含甲烷的矿井中甲烷的体积分数为0.1%~1.0%,在煤矿开采过程中甲烷的体积分数达到5%~15%就会造成瓦斯爆炸。如果能够将煤矿中的甲烷抽取出来利用,不但可以减少矿难事故的发生,而且能够提供更多可利用的清洁能源。因此,如何将此低品位的资源转化为可利用的能源,具有重要的研究价值。另外,甲烷的温室效应是CO2的21倍。因此,将伴随某些工业生产以及石油开采过程产生的低浓度甲烷直接排放到大气中,势必会造成严重后果。  相似文献   

10.
利用自制的铜基球形甲烷催化燃烧催化剂,在小型流化床反应器中对模拟含氧煤层气进行了流化床催化燃烧脱氧的实验研究,考察了床层温度、催化剂粒径、空速对脱氧效率和CO2选择性的影响。结果表明,较高的反应床层温度使催化剂活性增强,进而提高催化脱氧效率。床层温度在450 ℃以上,脱氧效率可稳定保持在95%以上。较小的催化剂粒径降低了内扩散阻力对催化反应的影响,提高催化反应的CO2选择性。床层温度在450 ℃以下时,降低空速可提高氧气转化率,但温度高于450 ℃时,脱氧反应速率加快,空速变化对脱氧效率影响不明显。此外,通过调节CH4/Air比例模拟不同含氧量的煤层气,考察流化床反应器及催化剂对含氧煤层气中O2浓度变化的适应性。模拟含氧煤层气中氧气体积分数在5%~15%,该催化剂均表现出高的脱氧活性和选择性,反应器出口气体中氧气体积分数低于0.2%,CO2选择性高于98%。  相似文献   

11.
煤与甲烷共转化制合成气过程的热力学分析   总被引:1,自引:0,他引:1  
采用Gibbs自由能最小法,对流化床煤与甲烷共转化过程进行了热力学分析。在保持体系绝热温度为常压流化床煤气化的操作温度1 273 K下,将煤与甲烷共转化过程的冷煤气效率、产出合成气的单位有效能氧耗及H2/CO比等指标与单纯煤气化过程进行了比较。结果表明,在煤气化体系中增加甲烷进料,能使冷煤气效率提高,单位有效能氧耗降低,产出合成气的H2/CO比可调。此外,甲烷可作为部分氢源,降低过程水耗。从热力学角度证明了煤与甲烷共转化方法对于有效利用煤层气的优越性,所得出的操作线也为该过程的实际操作指出了方向。  相似文献   

12.
采用流化床燃烧技术,使用自制Cu/γ-Al2O3颗粒作为催化剂床料,实验研究了超低浓度甲烷在流化床中催化燃烧时床层温度(450~700℃)、流化风速比ω(1.5 ~4)、进气甲烷体积分数(0.3% ~2%)等对甲烷燃烧效率的影响.结果表明,床层温度是影响甲烷催化燃烧反应的关键因素,甲烷的转化率随着床层温度的升高而增加;床层温度达到650℃时,甲烷含量低于1%的超低浓度甲烷其转化率超过95%,继续提高床层温度至700℃且控制流化风速比ω≤2可以实现甲烷的完全转化;甲烷转化率随着流化风速和进气甲烷浓度的增加而降低,当ω>3.5时,温度对甲烷转化的影响减弱,未燃烧的甲烷含量增大.动力学实验发现,床层温度较低时,催化反应受动力学控制,测得催化反应的活化能Eα为1.26×105 J/mol,反应级数m为0.73,当温度t>450℃时,扩散作用影响显著,反应级数增大.  相似文献   

13.
Wenjie SHEN 《物理化学学报》2017,33(12):2321-2322
正乙烯等低碳烯烃是重要的基础化工原料,被广泛用于生产塑料、纤维和橡胶等化工产品。其生产主要依赖石脑油蒸汽裂解,但源于石油加工路线的石脑油资源却日益稀缺,因此开辟和发展从甲烷(天然气、页岩气和煤层气的主要成分)、煤炭和生物质等非石油资源合成低碳烯烃新路线,  相似文献   

14.
在煤矿开采及燃气轮机等工业应用或移动源领域存在甲烷大体量排放,且传统高温焚烧法会导致二次污染,因此,在低温下实现甲烷高效转化成为亟待解决的问题.从能源利用和环境保护角度,催化燃烧技术是实现甲烷废气高效净化的有效措施.本文综述了近年来催化机理和催化剂的研究进展.首先,在实验和理论基础上,总结概括了甲烷氧化机理,其中,重点...  相似文献   

15.
采用流化床燃烧技术,使用自制Cu/γ-Al2O3颗粒作为催化剂床料,实验研究了超低浓度甲烷在流化床中催化燃烧时床层温度(450~700℃)、流化风速比ω(1.5~4)、进气甲烷体积分数(0.3%~2%)等对甲烷燃烧效率的影响。结果表明,床层温度是影响甲烷催化燃烧反应的关键因素,甲烷的转化率随着床层温度的升高而增加;床层温度达到650℃时,甲烷含量低于1%的超低浓度甲烷其转化率超过95%,继续提高床层温度至700℃且控制流化风速比ω≤2可以实现甲烷的完全转化;甲烷转化率随着流化风速和进气甲烷浓度的增加而降低,当ω>3.5时,温度对甲烷转化的影响减弱,未燃烧的甲烷含量增大。动力学实验发现,床层温度较低时,催化反应受动力学控制,测得催化反应的活化能Ea为1.26×105J/mol,反应级数m为0.73,当温度t>450℃时,扩散作用影响显著,反应级数增大。  相似文献   

16.
甲烷在褐煤煤焦上的裂解反应研究   总被引:3,自引:2,他引:1  
采用石英管固定床反应器,分别考察了不同温度(1123K、1173K、1223K、1273K)及不同浓度(10%、15%、20%)下,甲烷在褐煤煤焦上的裂解反应。结果表明,褐煤煤焦对甲烷裂解反应具有良好的催化活性,在所考察温度范围内,甲烷的初始转化率最高达99.5%,温度越高,甲烷的初始转化率越高;但随着反应的进行,转化率逐渐降低;甲烷进气浓度越高,初始转化率越低,而且催化剂失活也越快。反应前后煤焦电镜扫描照片及物性参数的比较表明,甲烷裂解生成炭沉积在煤焦表面,导致煤焦比表面积随反应的进行逐渐降低,与甲烷裂解转化率的变化趋势一致;反应后煤焦的孔容及微孔容都有所降低,平均孔径增大,说明甲烷的裂解生成炭造成了煤焦孔道尤其是微孔的堵塞,比表面积减小,导致了甲烷的转化率降低。  相似文献   

17.
本文研究了穴醚[2,2,2]和穴醚[2,2]在硝基甲烷中对镉的萃取行为。探讨了溶剂、穴醚浓度,碱浓度,无机酸浓度,盐效应及共存离子对镉萃取的影响。实验结果表明,硝基甲烷ε=35.6,μ=3.4德拜宜作为穴醚的溶剂。当穴醚[2,2,2]——硝基甲烷的浓度为2×10~(-3)M,Me_4NOH浓度为4×10~(-2)M时对镉的萃取最为有利。无机酸的引入使穴醚质子化程度加大,盐效应对镉的萃取无明显影响。十八种共存离子对镉萃取无干扰,因而选择性高。实验结果为用穴醚[2,2,2]萃取镉提供了依据。  相似文献   

18.
甲烷三重整制合成气   总被引:8,自引:0,他引:8  
姜洪涛  Li Huiquan  李会泉  张懿 《化学进展》2006,18(10):1270-1277
甲烷三重整是利用CO2-H2O-O2 同时重整甲烷的过程。该工艺既可以生产H2/CO 为1.5 —2.0的合成气,又可以缓解甚至消除催化剂的积炭,适合于更廉价地生产用于合成甲醇、二甲醚以及清洁燃料等下游产品的合成气。本文重点评述了近年来国内外甲烷三重整制合成气在热力学、催化剂、反应器、动力学等方面的研究进展,指出甲烷三重整反应在电厂烟气、煤层气、天然气综合利用方面具备良好前景,但要通过该过程实现廉价合成气的生产,仍需研制高活性、抗积炭性能强的催化剂,并对反应器进行改进,以及进行反应机理和反应动力学的深入研究。  相似文献   

19.
《化学教育》2014,35(3):96-96
正第1题笼中枪(Clathrate gun)在海洋的底部,蕴藏着大量甲烷,这些甲烷以笼形包合物形式存在,被称为甲烷水合物。这些宝藏被开采后不仅可以提供能源,也可以用作有机合成的原料。但是,科学家们也非常担心由于海洋温度的升高而引发这些水合物的自发分解。科学家认为,如果一定量的甲烷被释放到大气中,其产生的温室效应会引  相似文献   

20.
目前,人们对温室效应及其对世界气候影响的关注主要是在 CO2方面,而对甲烷却了解得不多,甚至还有些误解。其实,甲烷也是一种重要性仅次于 CO2的温室气体,同样能吸收来自太阳的红外辐射,而且吸收能力是 CO2的26倍!首次发现空气中存在着大量甲烷的时间是在本世纪40年代。自那时以来,空气中甲烷的浓度便以每年递增1%的速度不断增加,比 CO2增加的速度快了近3倍。难怪美国全国大气研究中心的科学家拉尔夫·西塞龙(Ralph Cicerone)会预言说,50年后,甲烷将取代 CO2而成为首要温室气体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号