首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
煤层气是储量十分丰富的煤炭伴生资源,也是煤炭开采中最大的安全隐患之一,同时还是重要的温室气体.研究煤层气的高效、清洁资源化利用具有资源和环境双重意义.因此,世界主要产煤国均十分重视煤层气的开发和利用.煤层气的主要成分是甲烷,目前主要通过两种方式实现其资源化利用:(1)直接转化,主要通过氧化偶联、催化氧化官能团化或脱氢芳构化等途径将其转化为高碳烃、含氧化合物及芳烃等;(2)间接转化,甲烷首先经催化重整反应制取合成气,而后再经Fischer-Tropsch合成、甲醇化和氢甲酰化等过程来合成饱和烃、烯烃、甲醇及其他含氧化物.对于前者,由于热力学限制,反应收率很低,应用前景较差,而经由合成气这一平台产物的间接转化路线被认为是一条甲烷资源化利用颇具工业前景的转化路线.因此,甲烷催化重整制合成气备受关注.研究表明,贵金属具有较好的甲烷重整催化性能,但其储量有限、价格昂贵的内在缺陷不利于甲烷大规模转化和资源化利用.Ni基催化剂具有与贵金属可比的催化活性和选择性,且其储量丰富,价格低廉,因此在甲烷重整反应中备受青睐.但是,相对于贵金属,Ni基催化剂易于积碳和烧结失活,这已成为制约其大规模工业化应用的瓶颈.迄今,大量文献报道关注如何提高Ni基催化剂的催化稳定性.而载体形貌调控是调节负载型催化剂的有效途径.本文开展了用作载Ni催化剂的氧化锆载体的形貌调控研究,以期可以有效调节载Ni催化剂的物化性质,进而调控载Ni催化剂的甲烷重整催化性能.采用水热法成功制备了松球状和鹅卵石状的单斜相氧化锆载体,进一步负载镍,制备了载镍催化剂,用于甲烷重整制合成气反应.具有分级结构的松球状氧化锆载Ni催化剂(Ni/ZrO2-ipch)展示出比鹅卵石状氧化锆和常规氧化锆纳米粒子载Ni催化剂显著好的催化活性和稳定性.采用XRD、N2吸附、TEM、H2-TPR、CO化学吸附、CO2-TPD、XPS和TGA等手段研究了松球状氧化锆载Ni催化剂高催化活性和稳定性的原因和机制.发现,其较高的催化活性主要归因于高的Ni分散度、改善的可还原性、促进的氧流动性以及较多的碱性位和较强的碱性,这些物化性质依赖于氧化锆载体的独特形貌.分级结构的松球状氧化锆载Ni催化剂高的甲烷重整催化稳定性主要源于催化剂的高抗烧结、抗积碳性能.加强的金属载体效应和介孔限域效应可以阻止金属Ni的高温烧结,而优良的抗积碳稳定性主要源于催化剂良好的氧流动性、较多的碱性位、较强的碱性以及小的Ni粒子尺寸.鉴于分级结构松球状氧化锆载Ni催化剂高的催化活性和优良的抗积碳、抗烧结稳定性,该催化剂用于甲烷重整制合成气具有广阔前景.而所制备的分级结构松球状氧化锆由于具有独特的结构和优良的热稳定性,可以作为性能优良的载体用于其他反应,尤其对于高温转化过程可望表现出明显优势.  相似文献   

2.
制备了Ba调变Ni基复合氧化物催化剂LaxBa1-xNiAl11O19-δ,并通过XRD、XPS、TPR、TEM、BET和TGA等技术对催化剂的结构、性质和对甲烷二氧化碳重整制合成气反应的催化性能以及催化剂表面积炭情况进行了表征.结果表明,Ba调变后复合氧化物的微观结构随Ba调变量发生规律性变化,但结构的改变对催化剂的理化性质和催化性能均无明显影响,该系列Ni基复合氧化物都具有较好的催化活性以及较高的抗烧结和抗积炭性能,是甲烷二氧化碳重整制合成气反应选择氧化的良好催化剂.  相似文献   

3.
Pt,Pd助剂对Ni基催化剂中Ni的分散度及抗积碳性能的影响   总被引:8,自引:3,他引:5  
研究了添加少量贵金属(Pt,Pd)的Ni/Al2O3催化剂对甲烷水蒸汽重整反应抗积碳能力和催化性能的影响.催化活性实验表明,添加少量Pt的样品显著提高了Ni/Al2O3催化剂的活性,稳定性,抗积碳和抗氧化能力,而添加Pd的样品对Ni/Al2O3催化剂的催化性能提高并不明显.利用氢气程序升温还原(H2-TPR),X射线晶体衍射(XRD),热重-差热分析(TG-DTA)等手段对反应前后的催化剂进行了表征,研究发现在Ni-Pt/Al2O3催化剂中Ni与Pt之间存在较强的相互作用力,在主要由Ni覆盖的表面形成了Ni-Pt双金属簇,提高了Ni的分散度,在催化剂的表面易于形成较小的Ni颗粒,抑制了Ni的烧结,改善了Ni基催化剂的抗积碳能力;贵金属Pt通过H2的溢流效应促进了Ni的还原,抑制了催化剂的氧化.而在Ni-Pd/Al2O3中,Ni和Pd存在着一定的偏析效应,不能有效的形成Ni-Pd双金属簇,在还原过程中分别被还原.  相似文献   

4.
合成气(CO、H_2)甲烷化是合成天然气的有效途径,Ni基催化剂是目前最具有工业化应用潜力的甲烷化催化剂。在催化反应过程中,由于高CO浓度、反应温度,以及原料气中的含硫组分,所以催化剂易发生积碳、烧结和硫中毒,从而导致失活。如何提高Ni基催化剂的抗硫性能、抗烧结和抗积碳能力仍是一个挑战。本文分别从金属-载体相互作用、催化剂表界面性质调控以及限域效应这三个方面综述了近年来在提高Ni基催化剂抗积碳、抗烧结和抗硫中毒性能领域的最新研究进展,以期为Ni基甲烷化催化剂微观结构设计及反应性能调控提供理论依据。  相似文献   

5.
甲烷在Ni/TiO2催化剂表面的活化   总被引:2,自引:0,他引:2  
考察了Ni/TiO2催化剂甲烷部分氧化和二氧化碳重整制合成气的反应活性,实验表明,以TiO2为载体的镍系催化剂对于甲烷部分氧化制合成气反应具有较好的活性,尤其对H2的选择性较高,对二氧化碳重整制合成气反应具有较好的低温反应活性.采用脉冲-质谱在线分析等技术,在无气相氧条件下向Ni/TiO2催化剂脉冲CH4,发现甲烷在催化剂表面的活化(转化)及其氧化产物的选择性与金属催化剂表面氧的浓度密切相关.CH4与Ni/TiO2催化剂作用过程中存在明显的氢溢流和氧溢流现象,可能是这种溢流效应使得Ni/TiO2催化剂具有良好的反应活性和抗积碳性能.  相似文献   

6.
甲烷转化制备的合成气是合成液体燃料和含氧有机化合物的原料 .甲烷转化制合成气的方法有甲烷蒸汽重整、甲烷部分氧化和甲烷、二氧化碳重整 3种 [1~ 3] .对于 CH4/CO2 重整反应 ,调节进料比可制备出 H2 /CO≤ 1、富含 CO的合成气 ,它适于羰基合成和 F- T合成 .这种方法一方面充分利用碳资源 ,缓解能源危机 ;一方面可减少温室气体的排放 ,改善人类的居住环境 .目前倍受关注 .CH4/CO2 重整制合成气 ,Rh、Ru、Pd、Ir等贵金属有很高的活性和稳定性 [4] .但其价格昂贵 ,高温易流失 ,商业化困难 .Ni基催化剂的活性与贵金属相当 ,但它易积…  相似文献   

7.
甲烷二氧化碳重整反应不仅可以将两种温室气体转化为更具有工业应用价值的合成气,而且反应产物中的H_2/CO比也比较适宜合成气的深加工过程,兼具环境效益和经济效益,因此受到广泛的关注与研究.但是,阻碍该过程工业化的主要问题在于反应中Ni基催化剂非常容易积碳,从而导致催化剂失活.近年来,甲烷二氧化碳催化重整领域的研究主要集中在反应机理和催化剂设计,其中大多数的研究结果表明,Ni基催化剂的抗积碳性能取决于反应过程中积碳速率与消碳速率之间的平衡.CO_2是该反应体系中唯一的氧源,因此Ni基催化剂的消碳能力在很大程度上取决于其对CO_2裂解活化能力的强弱.早期的文献中一般认为,CO_2的裂解活化与载体的Lewis碱性位点强弱相关,因此添加碱性氧化物助剂,比如MgO和CaO等,能够增强Ni基催化剂的碱性强度和CO_2吸附性能,有利于催化剂表面碳物种的转化,从而增强催化剂的稳定性.已有文献报道,添加微量MgO助剂(1 wt%)尽管没有影响Ni基催化剂的碱性强度,但是能够明显增强Ni基催化剂的稳定性,但没有对此结果给出明确的解释.在非均相催化研究领域中,活性金属与助剂在催化剂表面的分散性,是研究其催化作用的重要前提.大部分甲烷二氧化碳催化重整研究工作中,助剂的引入通常采用浸渍法,但是这种制备方法并不能有效保证助剂的分散度.本研究工作利用了水滑石材料的"记忆效应",将0.42 wt%Mg~(2+)引入到由Ni-Al水滑石前驱体焙烧后得到的Ni/Al_2O_3催化剂中.X射线能谱仪的结果表明,微量MgO助剂均匀分散在Ni/Al_2O_3催化剂表面上.经X射线衍射、CO_2程序升温脱附和H_2程序升温还原表征验证,添加微量的MgO助剂并没有对Ni晶粒尺寸、金属载体相互作用以及Al_2O_3载体表面碱性强度产生明显作用;然而甲烷二氧化碳重整活性评价测试和反应后催化剂的O2程序升温氧化实验结果显示,微量MgO助剂能明显增强Ni/Al_2O_3催化剂的稳定性,并且有效地阻碍了石墨碳在催化剂表面的形成.表面脉冲吸附实验结果证实,微量MgO助剂促进了CO_2在Ni颗粒表面的裂解活化,进而可以及时消除Ni金属表面由甲烷裂解产生的碳物种,防止其迁移、聚集和生成石墨碳.  相似文献   

8.
本文通过品格取代作用,制备了以Ni为活性组分的六铝酸盐复合氧化物催化剂SrNiAl11O19-δ并通过XRD,XPS,TPR等实验技术,对催化剂的结构和性质进行了表征.结果表明,六铝酸盐SrNiAl11O19-δ对二氧化碳重整甲烷制合成气反应具有良好的催化活性和稳定性,在780℃反应2小时,CH,和CO2转化率分别为95.0%和93.4%,没有发现活性组分Ni高温烧结和催化剂失活.  相似文献   

9.
温室效应是人类面临的巨大挑战,温室气体的转化利用因而成为广泛研究的热点和难点课题。甲烷二氧化碳重整,即干重整制合成气因为可以同时将两种温室气体(CH-4/CO_2)转化为可用于清洁能源生产的合成气(H_2/CO)而被认为是极具前景的先进技术。此技术目前仍未大规模工业化,其主要瓶颈在于尚未研发出合适的催化剂。过渡金属催化剂因其高活性和相对低廉的成本而被认为最具工业化前景,此前的研究主要集中在镍基催化剂,但是镍基催化剂易因表面积碳和金属烧结而快速失活。近年来,研究者发现钴基催化剂在甲烷二氧化碳重整中也具有良好的催化性能,并进行了初步的研究。本文将对钴基重整催化剂的研究现状进行简要综述。论文首先介绍了催化剂的活性组分、载体、助剂以及制备方法等对钴基催化剂重整性能的影响,接着阐述了钴基催化剂的重整反应机理以及积碳-消碳过程,最后对钴基重整催化剂的设计及未来研究方向进行了展望。  相似文献   

10.
 本文采用高温分解和焙烧硝酸盐的方法合成了一系列Ni基六铝酸盐催化剂BaNiyAl12-yO19-δ (y=0.1、0.3、0.6、0.9和1.0),并对它们在甲烷部分氧化制合成气反应中的催化性能、催化剂表面积碳及活性组分Ni流失等情况进行了考察。结果表明,该催化剂对甲烷部分氧化制合成气反应具有较好的催化活性,在850 ℃,甲烷转化率和CO选择性分别可达92%和95%。并且催化剂BaNiyAl12-yO19-δ (y=0.3)在100小时的POM反应后,催化剂表面积碳很少,积碳量仅为样品净重的0.8%,特别是100小时反应后,催化剂表面活性组分Ni没有发生流失。这种低积碳量和无活性组分Ni流失与催化剂结构中Ni与相邻原子间的强相互作用有关。  相似文献   

11.
页岩气革命为低碳经济发展提供了重要契机.在低碳烷烃(甲烷和乙烷)催化转化过程中,以二氧化碳作为氧化剂参与反应,通过C–H键的选择性活化可将页岩气转化为优质化工原料——合成气和乙烯,是一种低碳烷烃转化与二氧化碳资源化利用的工艺路线.本文总结了近年来甲烷干重整与乙烷和二氧化碳反应中与C–H键活化相关的研究进展,分析了甲烷干重整中镍基催化剂积碳及乙烷和二氧化碳反应中产物选择性的主要影响因素,并对该研究未来的发展方向进行了展望.  相似文献   

12.
 考察了加压(0.2~1.0 MPa)条件下BaNi0.3Al11.7O19-δ催化剂对甲烷部分氧化(POM)制合成气反应的催化性能,并且与LiLaNiOx/γ-Al2O3的POM催化性能进行了比较. BaNi0.3Al11.7O19-δ催化剂具有良好的POM催化性能,在850 ℃和1.0 MPa下,可得到75%的甲烷转化率和85%的CO选择性. 在60 h的连续实验中,催化剂活性及选择性基本保持不变,显示出较高的催化稳定性. 用XRD,XPS和TG/DTA表征手段研究了反应前后催化剂的晶体结构、表面性质以及积碳行为,结果表明该催化剂具有较强的抗Ni流失和抗积碳能力. BaNi0.3Al11.7O19-δ 的六铝酸盐结构中Ni离子和相邻原子之间的相互作用使其具有较高的热稳定性及结构稳定性,从而显示出良好的POM催化活性和稳定性.  相似文献   

13.
通过M的调变作用,制备了一系列六铝酸盐MNiAl_(11)O_(19-δ)(M=Ca、Sr和Ba)作为二氧化碳重整甲烷制合成气反应新催化剂,探索了它们的结构和催化性能。结果表明,这些催化剂在高温下对二氧化碳重整甲烷制合成气反应都表现出良好的催化活性和稳定性,在780℃下反应2小时,甲烷和一氧化碳转化率均在93.4%和91.2%以上,没有发现活性组分Ni的高温烧结和催化剂失活。同时,不同M调变对六铅酸盐催化剂的催化活性有不同影响。  相似文献   

14.
CH4与CO_2干重整反应对于环境保护和天然气资源的合理利用具有重要意义。SiO_2和Al_2O_3是适用于甲烷干重整反应的两种典型的催化剂载体。为了阐明这两种载体对催化剂性能的影响,本研究采用等体积浸渍法制备了Ni/Al_2O_3和Ni/SiO_2催化剂,并利用BET、TEM、H2-TPR、XRD、TG和Raman等技术对还原和反应后的催化剂进行了表征。结果表明,由于载体的性质不同,Ni基催化剂在甲烷干重整中的催化性能也不同。Ni/SiO_2催化剂的初始活性较高,但由于其金属-载体相互作用较弱,催化稳定性较差,在800℃下反应15 h其催化活性急剧下降;较弱的金属-载体相互作用使得Ni/SiO_2催化剂上的Ni颗粒较大,有利于积炭前驱物种的生成,导致催化剂快速失活。而对于Ni/Al_2O_3催化剂,金属-载体相互作用较强,Ni颗粒较小,但由于Ni与Al_2O_3生成了NiAlxOy物种,有效活性位减少,其催化活性相对较低,但催化稳定性较好,干重整反应进行50 h其活性保持稳定; Ni与Al_2O_3之间较强的相互作用有利于形成小且稳定的Ni粒子,能减少积炭,因而具有优异的催化稳定性。  相似文献   

15.
杨民  Helmut PAPP 《催化学报》2008,29(3):228-232
用浸渍法制备了Pt/MgO催化剂,并采用X射线衍射、X射线光电子能谱、透射电子显微镜和程序升温表面反应等技术对催化剂进行了表征.考察了催化剂对甲烷部分氧化制合成气反应的催化性能.结果表明,Pt/MgO催化剂具有较高的催化活性和选择性,甲烷转化率与合成气选择性在120 h内保持稳定.以金属状态存在的Pt对甲烷分解具有较高的活性,从而使催化剂对甲烷部分氧化反应具有较高的催化活性.活性组分Pt的存在状态和分散状态非常稳定,而Pt/MgO催化剂具有较强的抗积碳能力,使得催化剂在甲烷部分氧化制合成气反应中具有较高的稳定性.  相似文献   

16.
作为煤制天然气的核心技术之一,CO甲烷化工艺的开发基础便是高效催化剂的研制.目前,CO甲烷化催化剂主要采用Ni作为活性组分,但如何保持其具有较高的催化活性和优异的高温稳定性,仍为当今不得不面临的棘手问题.本文以乙二醇改性的三维介孔KIT-6为载体,利用其较高的比表面积、可调孔径、独特的双螺旋三维孔道结构等特点,通过湿式浸渍法成功制备了由助剂改性的Ni基催化剂,探讨了V,Ce,La,Mn等不同助剂对Ni基催化剂CO甲烷化催化性能的影响.分别采用X射线衍射、氢气程序升温还原、氢气程序升温脱附、傅里叶变换红外光谱、透射电子显微镜、能量色散X射线光谱、激光拉曼光谱和热重分析等手段对催化剂特性进行了表征.结果显示,Ni-V/KIT-6具有最高的Ni纳米粒子分散性(26.5%)和催化还原性,产生了最多的活性位,同时,Si–O–V的形成增强了金属-载体间相互作用,并因载体的三维介孔限制效应而形成较小Ni纳米粒子,这些均有助于提升Ni基催化剂CO甲烷化的催化性能和稳定性.在常压、250–400 ℃和60000mL/(g?h)空速的实验条件下对催化剂进行了催化活性评价测试.结果表明,助剂提高了CO甲烷化低温催化活性,其中,Ni-V/KIT-6在350 ℃的条件下实现了CO的完全转化,CH_4产率也高达85%;其在常压、500 ℃和60000 mL/(g?h)空速的操作条件下所进行的稳定性测试结果还显示,Ni-V/KIT-6也具有优异的抗烧结和抗积碳能力,展示了良好的高温稳定性.因此,Ni-V/KIT-6是一种具有广阔应用前景的CO甲烷化催化剂.  相似文献   

17.
作为煤制天然气的核心技术之一,CO甲烷化工艺的开发基础便是高效催化剂的研制.目前,CO甲烷化催化剂主要采用Ni作为活性组分,但如何保持其具有较高的催化活性和优异的高温稳定性,仍为当今不得不面临的棘手问题.本文以乙二醇改性的三维介孔KIT-6为载体,利用其较高的比表面积、可调孔径、独特的双螺旋三维孔道结构等特点,通过湿式浸渍法成功制备了由助剂改性的Ni基催化剂,探讨了V,Ce,La,Mn等不同助剂对Ni基催化剂CO甲烷化催化性能的影响.分别采用X射线衍射、氢气程序升温还原、氢气程序升温脱附、傅里叶变换红外光谱、透射电子显微镜、能量色散X射线光谱、激光拉曼光谱和热重分析等手段对催化剂特性进行了表征.结果显示,Ni-V/KIT-6具有最高的Ni纳米粒子分散性(26.5%)和催化还原性,产生了最多的活性位,同时,Si–O–V的形成增强了金属-载体间相互作用,并因载体的三维介孔限制效应而形成较小Ni纳米粒子,这些均有助于提升Ni基催化剂CO甲烷化的催化性能和稳定性.在常压、250–400 oC和60000 mL/(g·h)空速的实验条件下对催化剂进行了催化活性评价测试.结果表明,助剂提高了CO甲烷化低温催化活性,其中,Ni-V/KIT-6在350oC的条件下实现了CO的完全转化,CH4产率也高达85%;其在常压、500oC和60000mL/(g·h)空速的操作条件下所进行的稳定性测试结果还显示,Ni-V/KIT-6也具有优异的抗烧结和抗积碳能力,展示了良好的高温稳定性.因此,Ni-V/KIT-6是一种具有广阔应用前景的CO甲烷化催化剂.  相似文献   

18.
采用常规浸渍法制备Y2O3修饰的Ni/SiO2催化剂,并考察其催化甲烷部分氧化(POM)制合成气反应性能。结果表明,Y2O3的引入减小了金属Ni的粒径,有效提高了Ni在载体表面的分散性,增强了金属Ni与载体SiO2间的相互作用,从而使催化剂的抗烧结、抗积碳能力,以及催化剂的POM反应性能得以改善。  相似文献   

19.
甲烷临氧催化转化制合成气研究进展   总被引:3,自引:0,他引:3  
作为烃类液化的最重要步骤,从天然气制合成气是近几十年催化科学研究的前沿和热点之一.结合笔者实验室的工作,本文介绍了国内外甲烷临氧催化转化制合成气的研究现状,对甲烷部分氧化、甲烷临氧二氧化碳重整、甲烷临氧水蒸气重整及甲烷-二氧化碳-水-氧气偶合重整进行了阐述和分析,综述了在催化剂体系、反应机理和工艺条件等方面近期取得的研究成果;并对甲烷临氧催化转化制合成气技术今后的研究重点及应用作了展望.  相似文献   

20.
CH4与CO2干重整反应对于环境保护和天然气资源的合理利用具有重要意义。SiO2和Al2O3是适用于甲烷干重整反应的两种典型的催化剂载体。为了阐明这两种载体对催化剂性能的影响,本研究采用等体积浸渍法制备了Ni/Al2O3和Ni/SiO2催化剂,并利用BET、TEM、H2-TPR、XRD、TG和Raman等技术对还原和反应后的催化剂进行了表征。结果表明,由于载体的性质不同,Ni基催化剂在甲烷干重整中的催化性能也不同。Ni/SiO2催化剂的初始活性较高,但由于其金属-载体相互作用较弱,催化稳定性较差,在800℃下反应15h其催化活性急剧下降;较弱的金属-载体相互作用使得Ni/SiO2催化剂上的Ni颗粒较大,有利于积炭前驱物种的生成,导致催化剂快速失活。而对于Ni/Al2O3催化剂,金属-载体相互作用较强,Ni颗粒较小,但由于Ni与Al2O3生成了NiAlxOy物种,有效活性位减少,其催化活性相对较低,但催化稳定性较好,干重整反应进行50h其活性保持稳定;Ni与Al2O3之间较强的相互作用有利于形成小且稳定的Ni粒子,能减少积炭,因而具有优异的催化稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号