首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Chinese nonmulberry temperate oak tasar/tussah, Antheraea pernyi (Ap) silk is a natural biopolymer that has attracted considerable attention as a biomaterial. The proteinaceous components of Ap silk proteins, namely fibroin and sericin may represent an alternative over mulberry Bombyx mori silk proteins. In fact, the silk fibroin (SF) of Ap is rich in Arginyl‐Glycyl‐Aspartic acid (RGD) peptides, which facilitate the adhesion and proliferation of various cell types. The possibility of processing Ap silk proteins into different distinct 2D‐ and 3D‐based matrices is described in earlier studies, such as membranes, nanofibers, scaffolds, and micro/nanoparticles, contributing to a different rate of degradation, mechanical properties, and biological performance useful for various biomedical applications. This review summarizes the current advances and developments on nonmulberry Chinese oak tasar silk protein (fibroin and sericin)‐based biomaterials and their potential uses in tissue engineering, regenerative medicine, and therapeutic delivery strategies.  相似文献   

2.
张翼  周平  潘銮凤  谢尚喆  孙敏  李文婷 《化学学报》2007,65(24):2935-2940
聚三羟基丁酸脂和聚三羟基己酸脂的共聚物(PHBHHx)是一种具有良好强度和韧性的生物可降解高分子材料, 可作为组织工程心脏瓣膜支架的选择材料之一. 但其生物相容性尚不甚理想. 为此, 本工作利用丝素蛋白修饰改性高分子多孔支架, 以提高支架的生物相容性. 并将人体平滑肌细胞接种在该复合支架上进行体外培养, 以证实改性效果. 其中, 用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)方法测试细胞生长, 评估复合支架的细胞相容性. 并用扫描电子显微镜观察细胞在支架上的生长形态. 结果显示, 丝素蛋白修饰改性后的复合支架更有利于细胞的粘附与生长, 平滑肌细胞在支架上表现出良好的生长形态. 这表明, 丝素能够改善多孔支架的生物相容性, 使PHBHHx/丝素蛋白复合物能更适宜作为组织工程心脏瓣膜的支架材料. 结果对于进一步研究细胞外间质在复合支架上的生长以及体外培养的组织重建有重要的参考意义.  相似文献   

3.
Structural changes of native and regenerated silk fibroin membranes were induced by immersion in water-methanol solutions and examined as a function of immersion time and methanol concentration. X-ray diffractometry and infrared spectroscopy data showed that transition from random coil to β-sheet structure occurred favorably when both native and regenerated silk fibroin membranes were immersed in water-methanol solutions, regardless of the different immersion time. Only native silk membrane, treated for 2 min with pure methanol, maintained its original amorphous structure, as demonstrated by differential scanning calorimetric (DSC) curves. The degree of displacement, measured by thermomechanical analysis (TMA), was much greater for regenerated than for native silk fibroin membranes. SDS-PAGE pattern showed that native silk fibroin has a molecular weight of 350, while the regenerated sample is formed by a large number of polypeptides in the range of 200-50 KD. The amount of acidic and basic amino acids decreased slightly in regenerated silk fibroin. Physical properties of silk membranes treated with water-methanol solutions are discussed in terms of membrane structure, treatment conditions, and chemical structure of starting material. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Artificial small‐caliber vascular grafts are still limited in clinical application because of thrombosis, restenosis, and occlusion. Herein, a small‐caliber vascular graft (diameter 2 mm) is fabricated from poly(ε‐caprolactone)‐b‐poly(isobutyl‐morpholine‐2,5‐dione) (PCL‐PIBMD) and silk fibroin (SF) by electrospinning technology and then biofunctionalized with low‐fouling poly(ethylene glycol) (PEG) and two cell‐adhesive peptide sequences (CREDVW and CAGW) with the purpose of enhancing antithrombogenic activity and endothelialization. The successful grafting of PEG and peptide sequences is confirmed by X‐ray photoelectron spectroscopy. The suitable surface wettability of the modified vascular graft is testified by water contact angle analysis. The surface hemocompatibility is verified by platelet adhesion assays and protein adsorption assays, and the results demonstrate that both platelet adhesion and protein adsorption on the biofunctionalized surface are significantly reduced. In vitro studies demonstrate that the biofunctionalized surface with suitable hydrophilicity and cell‐adhesive peptides can selectively promote the adhesion, spreading, and proliferation of human umbilical vein endothelial cells. More importantly, compared with control groups, this biofunctionalized small‐caliber vascular graft shows high long‐term patency and endothelialization after 10 weeks of implantation. The biofunctionalization with PEG and two cell‐adhesive peptide sequences is an effective method to improve the endothelialization and long‐term performance of synthetic vascular grafts.  相似文献   

5.
利用复乳-溶剂挥发法合成适合细胞三维培养的聚乳酸-羟基乙酸共聚物(PLGA)多孔微球, 并对其表面进行丝素改性, 利用扫描电子显微镜、 能谱、 红外光谱和X射线衍射等对改性前后PLGA多孔微球的理化特性进行表征. 原代培养人牙龈间充质干细胞并进行成骨(茜素红染色)成脂(油红O染色)分化鉴定. 通过负压混悬法将牙龈干细胞负载于丝素改性的PLGA多孔微球上进行5-乙炔基-2'-脱氧尿嘧啶核苷(EdU)细胞增殖及成骨分化研究. 结果表明, 原代培养的牙龈干细胞具有多向分化潜能, 负载在丝素改性的PLGA多孔微球上的细胞有利于细胞增殖. 丝素改性的PLGA多孔微球是良好的细胞递送载体, 为进一步修复牙槽骨缺损提供了科学依据.  相似文献   

6.
pH值对丝素蛋白构象转变的影响   总被引:8,自引:0,他引:8  
模仿家蚕吐丝过程中伴随丝素蛋白自然脱水的纤维化过程,研究了再生丝素蛋白在各种pH值的磷酸盐缓冲溶液体系中自然干燥脱水成膜后的构象转变.利用激光拉曼散射光谱及其二维相关光谱,定性分析了丝素蛋白酰胺区(1600~1700cm-1)散射峰的相关组成及结构.在此基础上,利用13CCP-MAS固体核磁共振谱对丝素蛋白丙氨酸Cβ峰(δ14.5~22)进行了解析拟合.从而确定了体系中与Silk及Silk构象相关的组成含量与pH值的关系.结果表明,pH=5.2的酸性溶液有利于蚕丝丝素蛋白从Silk向Silk构象转变,而中性与碱性溶液(pH=6.9和8.0)则对丝素蛋白的构象转变影响甚小.  相似文献   

7.
羟丙基甲基纤维素诱导丝素蛋白的构象转变   总被引:1,自引:0,他引:1  
制备了羟丙基甲基纤维素 (HPMC)和丝素蛋白 (SF)的共混膜 ,用FTIR ,XRD和DSC方法对共混膜的结构进行了表征 ,讨论了HPMC对SF的构象转变作用 ,结果表明 ,HPMC能够有效的诱导SF的构象转变 ,HPMC的比例是影响SF的构象转变程度的重要因素 .当混入 3%~ 10 %HPMC时 ,SF的构象存在由无规线团或SilkI向SilkII(β 折叠 )的转变 ,当加入 7%HPMC时 ,β 折叠构象的比例最大 .从红外分析可知 ,构象转变是由于适量的HPMC与SF混合形成了二者之间的分子间氢键所致 .对不同比例的共混膜测定其在水中的溶出率 ,结果显示当HPMC的比例为 7%时SF几乎不溶于水  相似文献   

8.
The aim of this work is to develop a drug‐loaded silk fibroin fibrous membrane (DSFM) that can be attached to the surface of an anal fistula plug to improve the treatment of Crohn's disease (CD). Curcumin (CUR) and 5‐aminosalicylic acid (5‐ASA)‐loaded silk fibroin (SF) membranes are coaxially electrospun onto the surface of a braided silk filament plug. The membranes show a predominant structure of random coil and silk I conformation. The concentration of CUR/5‐ASA (weight ratio of 1/1) in the SF solution is optimized to 0.4, 0.9, and 1.9 wt%. The morphologies, secondary structures, and in vitro drug release properties of the membranes are examined. Sectional images of fibers in the membranes show core–shell structures. The coaxial electrospinning process does not alter the chemical characteristics of the drugs. The dual‐drugs encapsulated in the membranes are released in a steady and sustainable manner, and the cumulative release rate is improved by the increased drug loading. The membranes exhibit no cytotoxicity, thereafter increase the viability of human fibroblasts on the DSFMs. These SF membranes with core–shell structure and functional encapsulation of CUR and 5‐ASA should be useful for further studies toward the treatment of CD.  相似文献   

9.
The aim of this study is to assess whether stromal vascular fraction (SVF)‐soaked silk fibroin nonwoven mats (silk‐SVF) can preserve the functionality of encapsulated pancreatic endocrine cells (alginate‐PECs) after transplantation in the subcutaneous tissue of diabetic mice. Silk scaffolds are selected to create an effective 3D microenvironment for SVF delivery in the subcutaneous tissue before diabetes induction: silk‐SVF is subcutaneously implanted in the dorsal area of five healthy animals; after 15 d, mice are treated with streptozotocin to induce diabetes and then alginate‐PECs are implanted on the silk‐SVF. All animals appear in good health, increasing weight during time, and among them, one presents euglycemia until the end of experiments. On the contrary, when PECs are simultaneously implanted with SVF after diabetes induction, mice are euthanized due to suffering. This work clearly demonstrates that silk‐SVF creates a functional niche in subcutaneous tissue and preserves endocrine cell survival and engraftment.  相似文献   

10.
Previously, the authors conducted phytochemical investigations of the aerial parts of Larrea tridentata and reported triterpene glycosides and lignan derivatives. In continuation of the preceding studies, 17 lignans and lignan glycosides (1–17) were isolated, including seven new compounds (1–7). Herein, the structure of the new compounds was determined based on spectroscopic analysis and enzymatic hydrolysis. The cytotoxicity of 1–17 against HL-60 human promyelocytic leukemia cells was examined. Compounds 4–11 and 14–16 were cytotoxic to HL-60 cells, with IC50 values in the range of 2.7–17 μM. Compound 6, which was the most cytotoxic among the unprecedented compounds, was shown to induce apoptotic cell death in HL-60 cells.  相似文献   

11.
Liu H  Liu Y  Qian J  Yu T  Denga J 《Talanta》1996,43(1):111-118
Regenerated silk fibroin prepared from waste silk was employed as immobilization matrix for peroxidase and the structures of the blend membranes of regenerated silk fibroin and peroxidase were first investigated with IR and scanning electron microscopy. There was intermolecular interaction between peroxidase and regenerated silk fibroin in the immiscible state. Cyclic voltammetry and constant applied potential measurement showed that Methylene Green efficiently mediated electron transfer from oxidized horseradish peroxidase in regenerated silk fibroin membrane to a glassy carbon electrode. A sensor coupling immobilized peroxidase with Methylene Green responded rapidly to low H(2)O(2) concentration and achieved 95% of the steady-state current in less than 25 s with a detection limit of 1.0 x 10(-7) M H(2)O(2). The sensor was stable in continuous operation, indicating that peroxidase was entrapped in regenerated silk fibroin membrane and did not freely diffuse away from the sensor surface into solutions.  相似文献   

12.
For highly porous form such as sponges or scaffolds, the induction of the β-sheet formation of silk fibroin to make the water-stable materials usually results in their high shrinkage leading to a difficulty in controlling shape and size of materials. Thus, the objective of this study was to improve dimensional stability of silk fibroin sponge by incorporating chitin whiskers as nanofiller. Chitin whiskers exhibited the average length and width of 427 and 43 nm, respectively. Nanocomposite sponges at chitin whiskers to silk fibroin weight ratio (C/S ratio) of 0, 1/8, 2/8, or 4/8 were prepared by using a freeze-drying technique. The dispersion of chitin whiskers embedded in the silk fibroin matrix was found to be homogeneous. The presence of chitin whiskers embedded into silk fibroin sponge not only improved its dimensional stability but also enhanced its compression strength. Regardless of the chitin whisker content, SEM micrographs showed that all samples possessed an interconnected pore network with an average pore size of 150 μm. To investigate the feasibility of the nanocomposites for tissue engineering applications, L929 cells were seeded onto their surfaces, the results indicated that silk fibroin sponges both with and without chitin whiskers were cytocompatible. Moreover, when compared to the neat silk fibroin sponge, the incorporation of chitin whiskers into the silk fibroin matrix was found to promote cell spreading.  相似文献   

13.
A new all‐aqueous and green process is described to form three‐dimensional porous silk fibroin matrices with control of structural and morphological features. Silk‐based scaffolds are prepared using lyophilization. Gelatin is added to the aqueous silk fibroin solution to change the silk fibroin conformation and silk fibroin–water interactions through adjusting the hydrophilic interactions in silk fibroin–gelatin–water systems to restrain the formation of separate sheet like structures in the material, resulting in a more homogenous structure. Water annealing is used to generate insolubility in the silk fibroin–gelatin scaffold system, thereby avoiding the use of organic solvents such as methanol to lock in the β‐sheet structure. The adjusting of the concentration of gelatin, as well as the concentration of silk fibroin, leads to control of morphological and functional properties of the scaffolds. The scaffolds were homogeneous in terms of interconnected pores, with pore sizes ranging from 100 to 600 µm, depending on the concentration of silk fibroin used in the process. At the same time, the morphology of the scaffolds changed from lamellar sheets to porous structures based on the increase in gelatin content. Compared with salt‐leaching aqueous‐derived scaffolds and hexafluoroisopropanol (HFIP)‐derived scaffolds, these freeze‐dried scaffolds had a lower content of β‐sheet, resulting in more hydrophilic features. Most of gelatin was entrapped in the silk fibroin–gelatin scaffolds, without the burst release in PBS solution. During in vitro cell culture, these silk fibroin–gelatin scaffolds had improved cell‐compatibility than salt‐leaching silk fibroin scaffolds. This new process provides useful silk fibroin‐based scaffold systems for use in tissue engineering. Furthermore, the whole process is green, including all‐aqueous, room temperature and pressure, and without the use of toxic chemicals or solvents, offering new ways to load bioactive drugs or growth factors into the process.

  相似文献   


14.
There is a growing interest in the use of silk as a biomaterial for tissue engineering. Silk threads from Bombyx mori have a fibrous core of fibroin, the protein responsible for biocompatibility and bioactivity, which is surrounded by a family of "gummy" proteins, called sericins, which are almost completely removed during silk degumming. Three different methanol treatments on regenerated fibroin films were used to convert viscous solutions of Silk I to an insoluble crystalline form (Silk II), in an attempt to devise new processing protocols for the creation of a cell guiding fibroin surface. Human fibroblasts (MRC5 line) were used as probes of the cell-biomaterial interaction in the early stages of the process (1 h, 3 h, 6 h and 4 d after seeding). The effect of each treatment on cell adhesion, spreading and distribution was monitored by scanning electron microscopy (SEM) and was correlated to superficial properties (like roughness and crystallinity) and fibroin conformation by means of atomic force microscopy (AFM), used in both topographical and acoustic mode, and attenuated total internal reflection infrared spectroscopy (FTIR-ATR). It was found that traditional methanol treatments where fibroin films were soaked in methanol solution produced roughness patterns that affected only the very early stages of fibroblast adhesion (until 3 h from seeding), while the new treatment proposed could really dialogue with the cells. Its non-homogeneous surface can explain the existence of cells spreading in specific directions and the presence of cell repellent areas even 4 d after seeding.  相似文献   

15.
Despite that poly (lactic acid) (PLA) has satisfactory biodegradation in vivo, its application in biomedicine is restricted due to its unsatisfactory cytocompatibility. Silk fiber (SF) has outstanding biocompatibility and silk fibroin protein obtained from silk by degumming has good hydrophilicity. Therefore, combining the PLA and silk can improve hydrophilicity of PLA to apply as biomedical materials. In this study, different concentrations of sodium hypochlorite (NaClO) were used to separate the silk to obtain multiscale silk fibers (MSFs), which were implanted into the PLA electrospun fibrous membranes (EFMs). The morphology and structure of silk fibers separated by different concentrations of NaClO were studied by Zetasizer Nano ZS, UV spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Moreover, the biocompatibility of the surface-modified PLA composite membranes by MSFs was investigated by cell cultivation and proliferation. The results showed that the surface-modified PLA EFMs through MSF bundles obtained from NaClO split silk exhibited a certain improvement on PLA hydrophilicity and enhancement on cellular compatibility, which could have a broad prospect in the practical application of biomedical materials.  相似文献   

16.
Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.  相似文献   

17.
利用静电纺丝技术制备了明胶与聚乳酸的复合纤维膜, 研究了组分配比对复合膜的表面性能、孔隙结构和力学性能的影响, 并以复合膜为组织工程支架进行兔角膜上皮细胞的体外培养. 采用扫描电子显微镜、免疫荧光染色和噻唑蓝四氮唑溴化物(MTT)比色法综合评价了细胞在支架表面的黏附与增殖能力. 结果表明, 纺丝溶液的组分对纤维的直径分布和表面亲水性有显著影响, 不同组分配比的复合纤维膜均具有高孔隙率的通孔结构; 以明胶为基材可维持复合膜的细胞黏附性; 与聚乳酸复合可以明显提高复合膜的力学性能.  相似文献   

18.
Near-infrared spectroscopy (NIR) and differential scanning calorimetry (DSC) were used to investigate temperature-induced changes in the secondary structure and hydration of reconstituted Bombyx mori silk fibroin, with and without freezing water, by looking at regenerated silk fibroin films with a range of water content. We suggest that freezing water facilitates the movement of peptide chains and thus contributes to the conformational transition at 60 °C. The structural changes during heat treatment were analyzed by the two-dimensional correlation method. It was found that the band at 4600 cm−1 consists of complex overlapping components due to different secondary structure elements which compose the protein architecture. Thus, this band could be used as a sensitive probe to estimate the conformations of silk fibroin. By monitoring the variations of the spectral components dynamically, an NIR procedure for tracking the conformational transition of silk fibroin was established.  相似文献   

19.
桑蚕丝素-RGD融合蛋白的固态结构及其细胞粘附性分析   总被引:4,自引:0,他引:4  
姚菊明  祝永强  李媛  励丽 《化学学报》2006,64(12):1273-1278
利用基因工程方法把含有短肽RGD的氨基酸序列连接到桑蚕丝素蛋白的结晶序列GAGAGS上, 通过调节DNA的聚合度, 合成了具有[TGRGDSPA(GVPGV)2GG(GAGAGS)3AS]n一级结构、不同分子量大小的桑蚕丝素-RGD融合蛋白, 并且通过在M9培养基中添加[3-13C]Ala的方法进行融合蛋白的稳定同位素标记. 13C CP/MAS NMR结果显示, 融合蛋白中的GAGAGS部分具有与天然桑蚕丝素结晶部分相同的分子结构, 即Silk I处理后为均一的分子结构, 而Silk II处理后为不均一的分子结构, 它包含了三种不同的结构成分. 另一方面, 通过对小鼠成纤维细胞BALB/3T3在不同蛋白材料载体上的粘附和增殖性能的测定结果显示, 融合蛋白对细胞的增殖性能与天然胶原蛋白相近, 但表现出了比胶原蛋白更好的细胞粘附性能. 该研究结果显示, 如果对该桑蚕丝素-RGD融合蛋白进行适当加工, 可能适合于组织工程支架材料的应用.  相似文献   

20.
The conformation of silk fibroin in silk fibroin/chitosan (SF/CS) blend membrane was analyzed by infrared spectrum, X-ray diffractometry, and Raman spectrum. The results demonstrated that the SF could show β-sheet conformation when the SF content in blend membranes was 10% (w/w) and 60–80% (w/w), while the pure SF membrane showed random coil conformation. A mechanism of the conformation transition was suggested in that the SF chain could use the rigid CS chain as a mold plate to stretch itself to form a β-sheet structure according to the strong hydrogen bond between CS and SF. Therefore, a new concept, named “Polymer-Induced Conformation Transition,” was proposed. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2293–2296, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号