首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
刘钰  杨向光  赵震  吴越 《化学学报》1998,56(8):785-791
采用柠檬酸配合法合成了结构呈层状ABO~3的La~4BaCu~5O~1~2复合氧化物, 并以它为基体合成了一系列Mn取代Cu的样品(La~4BaCu~5~-~xMn~xO~1~2, x=1-5)并利用XRD, IR进行了结构表征, 结果表明其均为5层的ABO~3结构。利用H~2-TPR考查了掺杂Mn以后样品的氧化还原性能的变化, 发现由于Mn的掺杂使Cu明显的容易还原。还考查了样品对NO+CO反应的催化活性, 结果表明反应的活性中心是Cu离子,但加入适量的Mn离子可以使活性提高。  相似文献   

2.
研究了稀土钙钛矿型氧化物La1-xA′xCo1-yBiyO3-δ(A′z=Ba0.2,Sr0.4;y=0,0.2)催化剂上一氧化碳低温氧化反应.XRD结果表明这4个催化剂均为单相立方钙钛矿结构.18O2和CO脉冲实验结果表明Sr掺杂催化剂的晶格氧活动度和反应性比Ba掺杂的强.TPR结果表明Bi的掺杂降低了催化剂的还原温度,提高了催化活性,且Sr取代部分La比Ba取代部分La更有利于增加催化活性.我们认为,Sr.(或Ba)和Bi的掺杂引起的催化活性的提高与氧空位浓度的增加,Co和Bi离子氧化-还原循环的改善以及晶格氧活动度的增加密切相关.  相似文献   

3.
钟华  曾锡瑞  罗来涛 《分子催化》2005,19(5):356-360
采用聚乙二醇凝胶法合成了Co系稀土复合氧化物Pr2-xSrxCoO4±λ(0.2≤x≤1.0),以CO还原NO为探针反应及XRD、IR、TPR、XPS和化学分析等方法对催化剂的组成、结构进行了表征.结果表明所有样品都具有K2NiF4型结构,x=0.2和x=1.0时,样品中有少量杂相,0.6≤x≤1.0时,形成的复合氧化物除T相外尚有少量T*相生成;Pr2-xSrxCoO4±λ复合氧化物中Co3+的含量及非化学计量氧(λ)随x增大而增加;CO还原NO的催化活性与Co3+含量以及氧空位浓度有关.  相似文献   

4.
单一金属氧化物同时催化去除碳颗粒和NOx   总被引:2,自引:0,他引:2  
制备了系列金属氧化物催化剂,研究了富氧条件下单一金属氧化物同时催化去除碳颗粒和NOx的活性,考察了碳颗粒与催化剂之间的接触方式对催化活性的影响,并分析了碳颗粒和NO,催化同时去除的路径.结果表明,Cr,Mn、Co和 Ni 金属氧化物催化剂对碳颗粒和 NOx 同时去除具有较高的催化活性,并且在催化剂与碳颗粒之间"松散接触"方式下依然具有较高的活性;其同时催化去除碳颗粒和 NOx 的路径为,催化剂催化NO 氧化成NO2,NO2 促进碳颗粒氧化去除,而碳颗粒氧化的中间物 CO 还原 NO,促进 NO,还原去除.  相似文献   

5.
采用聚乙二醇凝胶法合成了Co系稀土复合氧化物Pr2-xSrxCoO4±λ(0.2≤x≤1.0),以CO还原NO为探针反应及XRD、IR、TPR、XPS和化学分析等方法对催化剂的组成、结构进行了表征.结果表明:所有样品都具有K2NiF4型结构,x=0.2和x=1.0时,样品中有少量杂相,0.6≤x≤1.0时,形成的复合氧化物除T相外尚有少量T*相生成;Pr2-xSrxCoO4±λ复合氧化物中Co3+的含量及非化学计量氧(λ)随x增大而增加;CO还原NO的催化活性与Co3+含量以及氧空位浓度有关.  相似文献   

6.
制备了系列金属氧化物催化剂, 研究了富氧条件下单一金属氧化物同时催化去除碳颗粒和NOx的活性, 考察了碳颗粒与催化剂之间的接触方式对催化活性的影响, 并分析了碳颗粒和NOx催化同时去除的路径. 结果表明, Cr、Mn、Co和Ni金属氧化物催化剂对碳颗粒和NOx同时去除具有较高的催化活性, 并且在催化剂与碳颗粒之间“松散接触”方式下依然具有较高的活性; 其同时催化去除碳颗粒和NOx的路径为, 催化剂催化NO氧化成NO2, NO2促进碳颗粒氧化去除, 而碳颗粒氧化的中间物CO还原NO, 促进NOx还原去除.  相似文献   

7.
以三嵌段共聚物PEG-PPG-PEG (P123,M=5800)为软模板合成了6个多级孔钙钛矿型氧化物La_(0.9)Ce_(0.1)Fe_(1-x)Co_xO_3(x=0, 0.2, 0.4, 0.6, 0.8, 1.0),用XRD, SEM, BET, XPS对其进行表征,并测试了样品对CO+NO的催化活性。结果表明:在B位进行Co掺杂,催化剂的形貌及物化特性发生了显著变化。Co掺杂量在x=0.2时,样品La_(0.9)Ce_(0.1)Fe_(0.8)Co_(0.2)O_3的比表面积、孔容和表面B位金属含量最大,催化活性最佳,在反应温度为276, 242℃时分别对CO, NO的转化率达到90%。  相似文献   

8.
使用浸渍法制备了Mn/TiO2,Mn/Al2O3,Mn/ZrO2,Mn-Y(Y=Ce,Fe,Ni,Co)/TiO2催化剂,用XRD,BET对催化剂进行了表征,同时在模拟NH3选择性还原NOx的反应条件下对催化剂的活性和选择性进行了考察.结果表明,载体的性质明显影响了Mn氧化物催化剂的活性,其中Mn/TiO2催化剂具有更佳的催化NH3选择性还原NOx的催化活性;Ce,Fe等其他金属的添加显著提高了Mn/TiO2催化剂的催化活性;随着Mn-Ce负载量的增加,Mn-Ce/TiO2催化剂的活性有显著提高.  相似文献   

9.
刘靖  王安琪  景欢旺 《催化学报》2014,35(10):1669-1675
金属离子掺杂纳米TiO2(M-TiO2,M=Zn2+,Cu2+,Co2+,Mn2+,Ni2+)在CO2与环氧化合物的偶联反应中表现出较高的催化活性.反应以四正丁基碘化铵(TBAI)为共催化剂,在无溶剂条件下进行.考察了反应温度、反应时间和CO2压力在Zn-TiO2/TBAI体系中对反应性能的影响.作为无毒的多相催化剂,Zn-TiO2可循环使用5次,其催化活性没有明显降低.  相似文献   

10.
采用柠檬酸络合法制备了Co/CeO2及其钙掺杂系列催化剂,并对催化剂进行了低温N2物理吸附、X射线衍射、H2程序升温还原、傅里叶变换红外光谱、高分辨透射电镜表征以及乙醇水蒸气重整催化性能测试.结果表明,所制Co/CeO2催化剂具有良好的乙醇水蒸气重整催化性能,500oC时乙醇能全部转化为C1,氢气产率高达85%以上.Ca掺杂减小了载体CeO2纳米颗粒尺寸,但对还原后Co0尺寸的影响较小.当Ca掺杂量大于5.0%时,催化剂氧化还原性能和乙醇水蒸气重整催化性能下降.较高的还原温度有利于体相Ce4+还原为Ce3+,并且提高了催化活性,认为金属-氧化物边界的增加提高了催化活性.初步稳定性考察结果表明,5%钙掺杂后的催化剂具有更好的抗积炭性能.  相似文献   

11.
采用柠檬酸络合法制备了Co/CeO2及其钙掺杂系列催化剂,并对催化剂进行了低温N2物理吸附、X射线衍射、H2程序升温还原、傅里叶变换红外光谱、高分辨透射电镜表征以及乙醇水蒸气重整催化性能测试.结果表明,所制Co/CeO2催化剂具有良好的乙醇水蒸气重整催化性能,500oC时乙醇能全部转化为C1,氢气产率高达85%以上.Ca掺杂减小了载体CeO2纳米颗粒尺寸,但对还原后Co0尺寸的影响较小.当Ca掺杂量大于5.0%时,催化剂氧化还原性能和乙醇水蒸气重整催化性能下降.较高的还原温度有利于体相Ce4+还原为Ce3+,并且提高了催化活性,认为金属-氧化物边界的增加提高了催化活性.初步稳定性考察结果表明,5%钙掺杂后的催化剂具有更好的抗积炭性能.  相似文献   

12.
制备了一种新型Ni掺杂多层纳米结构牡丹花状CeO2材料,研究了其催化性能,同时与Ni负载牡丹花状CeO2样品进行了比较.结果表明,Ni掺杂CeO2样品具有纳米晶粒和开放的介孔结构,特殊的形貌使其在CO氧化和甲烷部分氧化反应中具有独特的催化特性.Ni掺杂后,CeO2中产生了多余氧空位,同时其氧化还原活性也增强,其在CO氧化反应中的催化活性明显高于纯CeO2和Ni负载CeO2样品;在甲烷部分氧化反应中,牡丹花状CeO2负载3atm%Ni催化剂样品上甲烷转化率高于所有Ni掺杂的催化剂样品.但是在Ni负载型催化剂和花状CeO2催化剂上,甲烷的起始转化温度为400oC,而5.7atm%Ni的掺杂使其降至340oC.  相似文献   

13.
采用CO碳化SiO2和Al3O4负载的Co(NO3)2的方法制备了SiO2和Al3O4负载的Co2C催化剂,采用N2物理吸附、X射线衍射和H2-程序升温还原技术对催化剂进行了表征,并用于催化费托合成反应中.结果显示,需要较长碳化时间才可合成负载的Co2C催化剂;所制催化剂表现出CO加氢生成高碳醇的催化性能,其原因可能在于催化剂表面存在的金属Co物种使CO解离,表面Co物种有利于CO插入,从而导致醇的生成,但体相Co2C则不具有催化活性.  相似文献   

14.
LaBO3钙钛矿型复合氧化物同时消除柴油机尾气炭颗粒和NO   总被引:5,自引:0,他引:5  
采用柠檬酸络合燃烧法制备了LaBO3(B=V,Cr,Mn,Fe,Co,Ni,Cu)复合氧化物.采用X射线衍射、紫外-可见漫反射光谱、傅里叶变换红外吸收光谱、氢程序升温还原及扫描电镜等手段对催化剂进行了表征,并对其在同时消除柴油机尾气中炭颗粒和NO反应中的催化活性进行了评价.结果表明,在制备的七种复合氧化物中,除La-V-O和La-Cu-O外,均形成钙钛矿结构.LaBO3钙钛矿型氧化物氧化能力由强到弱的顺序为LaCoO3≈LaNiO3>LaMnO3>LaFeO3>LaCrO3,在同时消除炭颗粒和NO的催化反应中,钙钛矿复合氧化物催化剂的催化活性与其氧化能力直接相关.其中LaCoO3和LaNiO3样品对炭颗粒的氧化催化活性较好,在炭颗粒与催化剂松散接触的条件下,炭颗粒燃烧温度较低,分别为421和431℃,生成CO2的最大选择性高,分别为99.1%和99.7%,NO生成N2的转化率分别为17.2%和20.1%.  相似文献   

15.
采用溶胶-凝胶法(SG)制备了掺杂少量La或Ce的Pt/Al2O3贵金属催化剂和In2O3/Al2O3氧化物催化剂, 并考察了La或Ce对催化剂的比表面和晶相结构和丙烯在这些催化剂上选择性还原NO的活性. 结果表明, 掺杂少量的La或Ce, 可以改变催化剂的热稳定性, 富氧条件下丙烯选择性催化还原NO的反应中, La或Ce的掺杂对催化活性和催化活性温度窗口没有明显改善.  相似文献   

16.
TiO2负载Mn-Co复合氧化物催化剂上NO催化氧化性能   总被引:2,自引:0,他引:2  
氮氧化物(NOx)是大气主要污染物之一, 主要来源于化石燃料的燃烧, 其中NO不溶于水难以去除, 催化氧化技术可以将NO氧化为易溶于水可被脱硫装置去除的NO2, 具有十分重要的实际意义. 本文采用浸渍法制备了不同Mn掺杂量的Mn-Co/TiO2复合金属氧化物催化剂, 考察了其催化NO氧化的活性. 结果表明, Mn的掺杂对Co/TiO2催化剂催化NO氧化的活性有明显促进作用, 掺杂量为6%时, Mn(0.3)-Co(0.7)/TiO2催化剂NO的转化效率最高, 300℃达到88%. 采用X射线衍射(XRD)、N2吸附/脱附、H2程序升温还原(H2-TPR)、O2程序升温脱附(O2-TPD)和原位漫反射傅里叶变换红外(in-situ DRFTIR)光谱等技术对催化剂的物理化学特征进行了表征. 结果发现, 当掺杂量为6%时, Mn一方面促进了催化剂表面活性组分的分散, 增加了催化剂的比表面积和孔径; 另一方面提高了催化剂的还原性能, 促进氧的低温脱附, 此外还促进了反应中间产物桥式NO-3向NO2的反应, 从而提高了Co/TiO2催化剂的NO氧化活性.  相似文献   

17.
铈掺杂对Co_3O_4/微孔-介孔分子筛催化剂催化性能的影响   总被引:1,自引:0,他引:1  
采用水热法制备了微孔-介孔分子筛,并以Ce掺杂改性后制备了Co3O4/Ce-微孔-介孔分子筛催化剂,考察了Ce掺杂微孔-介孔分子筛催化剂对苯催化完全氧化性能的影响,并采用BET,XRD,TPR等技术对催化剂进行了表征。研究结果表明:Ce的加入有利于提高MSZ-B催化剂的催化活性。XRD分析显示Ce的加入不会阻塞Co3O4在微孔-介孔分子筛孔道内的分布;TPR分析表明:Ce的加入提高了MSZ-B催化剂的可还原性能,催化剂的可还原性能是影响催化活性的主要因素;另外,介孔的存在不利于Ce改性Co3O4/ZSM-5微孔分子筛催化剂活性的提高。  相似文献   

18.
助剂对Co/HMS催化剂结构和F-T合成性能的影响   总被引:2,自引:1,他引:2  
详细研究了钍、锆、锗及铈助剂对钴质量分数为15%的Co/HMS催化剂结构、 F-T合成CO转化率、CO2选择性及烃分布的影响,结果表明:钍能适当提高F-T合成 活性,且低温下具有较强的链增长能力;锆、锗、铈降低了催化剂CO转化率,催化 剂加氢能力变强,导致低碳烃增加较快,汽柴油馏分段减低,相应的链增长能力降 低,并以锰和铈较为明显;XRD,TPR及TG表征表明:锆和铈可提高催化剂Co还原度 ,但F-T合成反应时金属Co易披氧化,反应中金属Co量明显减少,CO转化率降低, 并以铈最为显著;Th助催化剂Co还原度稍有减低,Co分散度高于Co/HMS,且反应 中金属Co较为稳定,Co转化率得以提高;添加Mn助剂后,催化剂难以还原,反应中 活性相金属Co量较小,CO转化率较低.  相似文献   

19.
钙钛矿型复合氧化物对许多反应具有较高的催化活性,它们被广泛地用作CO氧化的催化剂.陈水华等对SmMeO_3(Me:V、Cr、Mn、Fe、Co)和Tascon等对LaMeO_3(Me:V、Cr、Mn、Fe、Co、Ni)上CO催化活性评价说明,LnMnO_3和LnCoO_3(Ln=La、Sm)活性最好,而LaNiO_3则表现和LaCoO_3相似活性,由此可推断这些氧化物具有相似的催化性能.本文用TPR-GC和XRD考察了在还原气氛下,LaNiO_3的还原机理,这对研究其电、磁特性具有一定的指导意义.  相似文献   

20.
碳化铁催化剂的制备及其对CO加氢的催化活性   总被引:2,自引:0,他引:2  
 以Fe2O3为原料,采用两种预处理方法制备了碳化铁催化剂. 结果表明,直接在CO气氛下进行碳化处理,或者以H2预还原后再用CO进行碳化处理均可以制备出碳化铁催化剂. 碳化温度是制备过程中的关键因素. 对于Fe2O3样品,较适宜的碳化温度是350 ℃,而对于添加了K助剂的样品,只有经H2预还原处理后再于350 ℃用CO碳化处理4 h才能将样品完全转化为Fe5C2. 在CO加氢的评价实验中,碳化铁催化剂表现出很高的催化活性,生成的烃类产物中主要是饱和烷 烃,未检测到乙烯的生成. 而在K改性的催化剂上反应产物中烯烃的含量明显提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号