首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
简单介绍了激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)的基本原理及装置。分别对LA-ICP-MS在飞秒激光器、紫外激光器、固液气溶胶混合进样、集合式小样品标样、原位统计分布技术上的技术新进展进行了详细的评述。最后对LA-ICP-MS在元素含量分析与空间分布分析中所占的地位及其应用前景进行了展望。  相似文献   

2.
激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)作为一种可以直接分析固体材料的元素含量和同位素比值的分析技术,已经历了30多年的迅速发展。本文首先简要介绍了LA-ICP-MS的仪器装置,之后阐述了LA-ICP-MS定量分析中的基体效应、分馏效应以及定量校正方法,重点介绍了其在生物医学研究中的应用。最后对LA-ICP-MS的发展方向和应用前景进行了展望。  相似文献   

3.
本文简单地介绍了电感耦合等离子体质谱(LA-ICP-MS)的基本原理及装置。分别对LA-ICP-MS在飞秒激光器、紫外激光器、固液气溶胶混合进样、集合式小样品标样、原位统计分布技术上的技术新进展进行了详细的评述。  相似文献   

4.
激光剥蚀串联电感耦合等离子体质谱法(LA-ICP-MS)是一种功能强大的化学元素检测方法,它具有样品前处理简单、多元素同时测定、高通量、高灵敏度、宽线性范围以及原位分析等优点。同时,激光剥蚀可以与多接收器电感耦合等离子体质谱仪(MC-ICP-MS)串联用于稳定同位素组成测定,不仅避免了繁琐的样品前处理,同时还可应用于固体样品的微区原位同位素分析,揭示微观尺度上稳定同位素组成的变化。LA-ICP-MS已广泛应用于地质、考古等领域,其在环境科学领域应用相对起步较晚,但近年来发展迅速。该文总结了近年来LA-ICP-MS的环境分析方法开发及其在环境科学中的应用进展,并对其未来发展趋势进行了展望。  相似文献   

5.
冯流星  王军 《分析化学》2014,(4):536-541
针对目前采用同位素稀释-激光剥蚀-电感耦合等离子体质谱(ID-LA-ICP-MS)对固体生物组织切片样品难以实现原位准确定量的难题,本研究将同位素稀释法与LA-ICP-MS技术相结合,通过开展生物组织样品与浓缩稀释剂的同位素充分交换平衡、稀释剂添加方式、原位的同位素比测量等关键技术研究,确定了组织切片与同位素稀释剂的最佳平衡时间、稀释剂的质量以及选用甲醇作为稀释剂溶剂等实验条件,建立了基于同位素稀释技术的LA-ICP-MS技术在生物样品组织切片中Fe元素的微区定量分析方法,并采用实验室自行制备的均匀的山羊脑和牛肝组织切片标准样品对方法进行了验证,通过ID-LA-ICP-MS方法的测量结果与微波消解-同位素稀释方法的测量结果相一致,验证了该方法的有效性和可靠性。本方法可进一步应用于临床中生物组织切片样品中金属元素的原位、微区定量测量及成像分析。  相似文献   

6.
便携式气相色谱-质谱联用仪的研制及应用   总被引:3,自引:0,他引:3  
将双曲面三维离子阱质谱技术与低热容气相色谱技术相结合,研制了便携式气相色谱-质谱联用仪(GC-MS).此仪器主要由进样系统、低热容气相色谱模块、气质接口以及小型化离子阱质谱模块等构成,其主机重量小于14 kg,体积为44 cm×36 cm×22 cm,功耗小于100W.该仪器中的离子阱质谱仪系统具有15~550 amu...  相似文献   

7.
生物体内的微量元素具有十分重要的生物功能,也与许多疾病密切相关。现代生物医学的研究亟需能在组织、细胞等不同水平上原位分析生物样品中微量元素的分析方法。本研究建立了激光剥蚀-电感耦合等离子体质谱( LA-ICP-MS)原位分析生物样品的方法。采用线扫描模式和较小的激光输出能量(﹤1 J/cm2),得到了鼠脑切片和金纳米颗粒暴露后单细胞的金属元素成像图。 LA-ICP-MS具有空间分辨率高、检出限好、运行成本较低等优势,有望在生物医学研究中得到更广泛的应用,发挥更重要的作用。  相似文献   

8.
陈会明  秦涛  徐晓白 《分析化学》2003,31(7):865-873
脱氧核糖核酸(DNA)加合物近十多年来一直是环境科学、医学和生态毒理学的前沿和热点研究领域之一。作为DNA加合物研究手段的DNA加合物分析技术,将传统仪器分析与分子生物学技术相结合,其分析方法既体现了现代分析仪器的新进展,也反映出分子生物学研究的新动向。本文主要结合国外DNA加合物研究状况,评述了DNA加合物主要分析技术,尤其对DNA加合物分析技术的新进展作了详细评述。  相似文献   

9.
务宗伟 《化学研究》2008,19(3):91-94
利用大体积进样技术结合气相色谱-质谱仪器,对二噁英的测定效果进行了研究.对进样量1,5,10,25,50μL和100μL的色谱图进行了分析,同时与传统分流/不分流进样技术进行了对比.对比和研究表明:使用大体积进样方式完全可以代替传统分流/不分流进样技术,并且不影响色谱分离度,又可以大幅度提高仪器分析的灵敏度.  相似文献   

10.
基于飞行时间质谱技术、线性离子阱技术、大气压电离源等核心技术,自制了一款台式高分辨线性离子阱飞行时间联用质谱仪器(LIT-TOF MS)。以电喷雾离子源对仪器性能进行表征:LIT-TOF MS的质量分辨率超过12 000(利血平m/z 609),质量范围达到33~1 922 amu,灵敏度为1μg/L;能够实现MS3的三级质谱分析效果。对氨基酸进行了定性及定量的初步应用分析,结果表明:LIT-TOF MS可为代谢组学研究中实时、在线、高通量测定生物复杂样品中氨基酸的含量及其变化提供一定依据。该仪器能与多种常压电离技术联用,有望用于药品、环境、食品等领域。  相似文献   

11.
Glutathione peroxidase (isolated from bovine erythrocytes) and its behaviour during alkylation and enzymatic digestion were studied by various hyphenated techniques: gel electrophoresis–laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS), size-exclusion liquid chromatography–ICP MS, capillary high-performance liquid chromatography (capHPLC)–ICP MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, electrospray MS, and nanoHPLC–electrospray ionization (ESI) MS/MS. ESI TOF MS and MALDI TOF MS allowed the determination of the molecular mass but could not confirm the presence of selenium in the protein. The purity of the protein with respect to selenium species could be evaluated by LA ICP MS and size-exclusion chromatography (SEC)–ICP MS under denaturating and nondenaturating conditions, respectively. SEC–ICP MS and capHPLC–ICP MS turned out to be valuable techniques to study the enzymolysis efficiency, miscleavage and artefact formation during derivatization and tryptic digestion. For the first time the parallel ICP MS and ESI MS/MS data are reported for the selenocysteine-containing peptide extracted from the gel; capHPLC–ICP MS allowed the sensitive detection of the selenopeptide regardless of the matrix and nanoHPLC–electrospray made possible its identification. Figure Eye catching image Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) is well established as a sensitive trace and ultratrace analytical technique with multielement capability for bioimaging of metals and studying metallomics in biological and medical tissue. Metals and metalloproteins play a key role in the metabolism and formation of metal‐containing deposits in the brain but also in the liver. In various diseases, analysis of metals and metalloproteins is essential for understanding the underlying cellular processes. LA–ICP–MS imaging (LA–ICP–MSI) combined with other complementary imaging techniques is a sophisticated tool for investigating the regional and cellular distribution of metals and related metal‐containing biomolecules. On the basis of successful routine techniques for the elemental bioimaging of cryosections by LA–ICP–MSI with a spatial resolution between 200 and ~10 µm, the further development used online laser microdissection ICP–MSI to study the metal distribution in small biological sample sections (at the cellular level from 10 µm to the submicrometer range). The use of mass spectrometric imaging of metals and also nonmetals is demonstrated on a series of biological specimens. This article discusses the state of the art of bioimaging of metals in thin biological tissue sections by LA–ICP–MSI with spatial resolution at the micrometer scale, future developments and prospects for quantitative imaging techniques of metals in the nanometer range. In addition, combining quantitative elemental imaging by LA/laser microdissection–ICP–MSI with biomolecular imaging by matrix‐assisted laser desorption/ionization–MSI will be challenging for future life science research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
An analytical technique utilizing a near‐field effect (to enhance the incident light energy on the thin tip of an Ag needle) in a laser ablation inductively coupled plasma mass spectrometry (NF‐LA‐ICP‐MS) procedure was developed. To produce the thin needles with a tip diameter in the hundreds of nm range a robust needle etching procedure was established. The ‘sample‐to‐tip’ distance was controlled via the measurement of a tunnel current between the needle and sample surface. The NF‐LA‐ICP‐MS technique thus developed was applied for the analysis of copper isotopic standard reference material NIST SRM 976 and tungsten‐molybdenum alloy NIST SRM 480 in the nm resolution range. The observed craters ranged from 200 nm to about 2 µm in diameter and were dependent on the needle used as well as on the ‘sample‐to‐tip’ distance. The mass spectrometric measurements of 63Cu+ ion intensity on NIST SRM 976 showed that using near‐field enhancement in laser ablation allowed a roughly 6‐fold increase in the ion intensity of the analyte when the needle was about 100 nm (and below) from the surface, in contrast to when it was far away (e.g. 10 µm) from the sample. The relative standard deviation (RSD) of the 65Cu+/63Cu+ isotopic ratio measurements by NF‐LA‐ICP‐MS was 3.9% (n = 9). The detection efficiencies obtained for the compared LA‐ICP‐MS and NF‐LA‐ICP‐MS methods were found to be 4.6 * 10?3 counts per second (cps)/ablated atom and 2.7 * 10?5 cps/ablated atom, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Although laser ablation (LA)‐ICP‐MS has been reported for the determination of metalloproteins separated by gel electrophoretic techniques (GE), systematic studies that define the conditions essential for successful measurements are still scarce. In this paper we present the results of our studies of basic conditions for the effective application of GE‐LA‐ICP‐MS for the separation of metal‐binding proteins, focusing on their stability during GE and post‐separation gel treatment. The stability of metal–protein complexes (haemoglobin, myoglobin, superoxide dismutase, carbonic anhydrase, transferrin, albumin, cytochrome c) during GE is dependent on the nature of the metal–protein interaction and the principle of separation. We have observed that non‐denaturing GE is a suitable separation technique for most metal–protein complexes (e.g. Zn in carbonic anhydrase and Fe in Tf and myoglobin were quantitatively recovered in a spiked liver cytosol), whereas separation by denaturing GE strongly impaired the stability of the complexes. Equally important is the post‐separation treatment of the gel to enable successful detection of the metal. LA‐ICP‐MS requires drying of the gel without loss of protein‐bound metal or cracking of the gel. This was successfully achieved using glycerol followed by heating. We demonstrate that staining of the gel prior to LA‐ICP‐MS using silver or Coomassie blue is not recommended, since most protein‐bound metal is lost during the staining procedure. Furthermore it has been shown that only line scanning with a speed of less than 30 μm/s can reliably distinguish between lines 1 mm apart, while raster spot analysis carries the risk of misinterpretation due to contamination in/on inhomogeneous gels.  相似文献   

15.
The determination of trace elements in pure quartz glass samples has been performed by coupling an ICP quadrupole mass spectrometer with the LINA-Spark-Atomizer, an IR laser ablation system dedicated to direct bulk and surface analysis of solid samples. Linear calibration curves were obtained for nine elements (Na, Al, Ca, Ti, Cr, Mn, Zr, Ba, and Pb) in the ng g–1 range with detection limits of less than 10 ng g–1 for Ca, Cr, Mn, Zr, Ba, and Pb and in the range of 120–220 ng g–1 for Na, Al, and Ti. The distance between the laser focal point and the sample surface has a significant influence on signal intensity and precision, both of which can be improved by a factor of approximately two by focusing the laser 15 mm behind the sample surface. Aerosol moistening reduced the standard deviation of the signal intensity by a factor of 2–4. Signal instability, which resulted from different ablation rates or variations in the transmission of the mass spectrometer, were compensated by use of the simultaneously measured SiAr+ ion as an internal standard. Under these conditions precision was usually better than 5% RSD. The results were compared with those obtained by use of a commercial LA–ICP–MS system. With this instrumentation linear calibration curves were achieved for three elements only (Al, Ti, and Pb), showing that LA–ICP–MS is less appropriate for bulk analysis in the ng g–1 range.  相似文献   

16.
The applicability of laser ablation (LA) inductively coupled plasma (ICP) spectrometry for assessing elemental distributions in layered ceramics was investigated and compared with electron probe microanalysis (EPMA). Ordinary glazed wall tiles were employed as model specimens due to their defined structure and composition. They were used for calibration in the analysis of ancient pottery. A qualitative depth profile was acquired by single-spot laser drilling perpendicular to coatings with a Nd:YAG (1064 nm) laser coupled with an ICP optical emission spectrometer (OES). The lower lateral resolution associated with the laser spot diameter of 1.0 mm led to smoothing of the depth profile due to the averaging of local irregularities. In addition, transverse line scans by ablation across the tile section using an ArF* (193 nm) laser coupled with an ICP mass spectrometer (MS) were performed. LA-ICP-OES depth profiles and LA-ICP-MS transverse scans were validated by EPMA section scans and 2D back-scattered electrons images. The LA-ICP-OES acquisition was less dependent on sample surface and layer irregularities, whereas the transverse line scan over the tile section with the small-spot beam offered insight into the micromorphology of the individual layer. The combined approach revealed the occurrence of individual mineral grains, micro-heterogeneities and the character of interfaces between layers.  相似文献   

17.
The potential of high‐precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA‐MC‐ICP‐MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA‐MC‐ICP‐MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in‐house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured‐corrected Ca isotope ratio values (43Ca/44Ca and 42Ca/44Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured‐corrected Pb isotope ratios (207Pb/206Pb and 208Pb/206Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)‐ICP‐MS instrument. The use of LA‐MC‐ICP‐MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is an attempt to point out the complex correlations between the experimental conditions in solid sampling by lasers. In particular, the influence of the laser properties, the surrounding gas, and the matrix on the analytical results of laser ablation techniques, such as laser induced breakdown spectrometry or laser ablation–ICP–MS, will be discussed.  相似文献   

19.
《Electroanalysis》2006,18(22):2232-2242
A solid contact calcium‐selective electrode with a poly(pyrrole) intermediate layer doped with the calcium ion‐complexing ligand Tiron was successfully constructed and examined towards the possibility of lowering the detection limit. Two calcium ionophores, ETH 1001 and ETH 129, were compared. A variety of different shapes of potentiometric responses can be obtained in a controlled manner by applying an appropriate conditioning procedure. The lifetime of the investigated electrodes was longer than 1 year. The modified poly(pyrrole) solid contact electrode was compared with the coated wire type. An inductively coupled plasma mass spectrometry with laser ablation analysis (LA ICP MS) was used to confirm the transmembrane ion fluxes.  相似文献   

20.
The use of laser ablation (LA) as a sample-introduction method for inductively coupled plasma mass spectrometry (ICP-MS) creates a powerful tool for trace elemental analysis. With this type of instrument, high analyte spatial resolution is possible in three dimensions with ng/g limits of detection and minimal sample consumption. Here, simultaneous detection is used to eliminate the correlated noise that plagues the ablation process. This benefit allows analyses to be performed with single laser pulses, resulting in improved depth resolution, even less sample consumption, and improved measurement precision. The new instrument includes an LA sample-introduction system coupled to an ICP ionization source and a Mattauch-Herzog mass spectrograph (MHMS) fitted with a novel array detector. With this instrument, absolute limits of detection are in the tens to hundreds of fg regime and isotope-ratio precision is better than 0.02% RSD with a one-hour integration period. Finally, depth-profile analysis has been performed with a depth resolution of 5 nm per ablation event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号