首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
用智能重量分析技术(IGA)研究了环戊烷在silicalite-l分子筛上的吸附特性。结果表明,随着温度的降低,环戊烷的吸附等温线从第一类型过渡为第国类型,在254K和274K温度下吸附等温线呈现滞后环,为第四类型,而吸附等温线在304K、323K下为阶梯形,在354K、423K温度下呈第一类型,其中423K温度下的吸附等温线可准确的用Langmuir方程来描述。本文同时讨论了吸附质分子间以及吸附质和吸附剂间的相互作用、分子结构特性、分子筛对吸附质分子的空间位阻、分子筛的能量不均匀表面等对环戊烷在silicalite-l分子筛上吸附性能的影响。  相似文献   

2.
C5烷烃分子在AlPO4-5分子筛中吸附的分子模拟研究   总被引:3,自引:0,他引:3  
采用分子水平计算机模拟方法研究了环戊烷、正戊烷和2-甲基丁烷在AlPO4-5分子筛中的吸附,得到了有关吸附平衡常数、吸附热、吸附等温线以及平均势能等。结果表明,在373 K,2-甲基丁烷的饱和吸附量高于其他两种异构体;473 K,环戊烷的饱和吸附量高于其他两种异构体;573 K,在所测试的压力范围内,环戊烷的吸附量都高于其他两种异构体,2-甲基丁烷的吸附量高于正戊烷。C5烷烃分子在AlPO4-5中吸附量的不同是由于他们在分子筛中的排列方式不同而引起的。低吸附量时C5烷烃分子平均势能不随吸附量变化;高吸附量时平均势能随着吸附量的增加而降低;而2-甲基丁烷和环戊烷分子的平均势能变化更加明显。  相似文献   

3.
采用巨正则统计系综Monte Carlo模拟方法研究了不同温度、不同吸附方式下纯硅MCM-22型分子筛ITQ-1上苯与丙烯分子的吸附行为. 分子筛内吸附质粒子云分布模拟结果显示, 苯和丙烯主要吸附在超笼和十元环孔道内, 其中丙烯分子几乎充满了孔道内部大部分区域, 在链接超笼之间的十元环窗口也充满了丙烯分子, 而苯分子在超笼内和十元环孔道内的吸附却较为分散、均匀. 丙烯与分子筛之间相互作用能高于苯与分子筛之间的相互作用能, 使苯分子吸附相对丙烯分子更为稳定. 温度变化对分子筛上丙烯吸附远大于对苯吸附的影响, 100 kPa时温度由298 K升高至443 K导致丙烯分子吸附量迅速减少, 而对苯分子却没有显著的影响. ITQ-1分子筛上存在苯和丙烯分子的竞争吸附, 使两者吸附相互作用能最可几分布朝着折中方向移动. 苯与丙烯在分子筛内吸附等温线的模拟结果表明, 在温度较高、压力较低时, 丙烯的吸附量小于苯的吸附量.  相似文献   

4.
环戊烷在silicalite-1分子筛上的扩散性能的研究   总被引:9,自引:0,他引:9  
采用智能重量分析技术(Intelligent-Gravimetric Analysis)研究了环戊烷在silicalite-1分子筛上的扩散性能。同一温度下,吸附质的扩散速率随其吸附量的增加而减小,而温度越高扩散系数越大。本文同时讨论了吸附质分子的分子构型、尺寸、吸附温度和吸附量等因素对吸附质扩散性能的影响。  相似文献   

5.
应用巨正则蒙特卡罗模拟方法研究了噻吩分子以及噻吩与异辛烷混合物在MCM-22分子筛中的吸附和分布. 通过模拟获得了噻吩分子在MCM-22分子筛中不同温度(298、363 和393 K)下的吸附等温线和等量吸附热, 以及298 K时噻吩和异辛烷分子二元混合物在MCM-22分子筛中的吸附及分布情况. 结果表明, 吸附温度和吸附压力对噻吩分子在MCM-22分子筛吸附都有影响, 但等量吸附热受温度和吸附量影响较小. 对于二元混合物的吸附, 噻吩和异辛烷在分子筛中存在竞争吸附过程, 噻吩能够大量吸附在MCM-22分子的十元环和超笼中, 而异辛烷主要吸附在MCM-22分子筛的超笼系统, 从而可以将噻吩分子与异辛烷分子分离开来.  相似文献   

6.
苯与丙烯在β分子筛上吸附行为的蒙特卡罗研究   总被引:1,自引:0,他引:1  
孙晓岩  李建伟  李英霞  陈标华 《化学学报》2008,66(15):1810-1814
采用巨正则统计系综蒙特卡罗模拟方法研究了β分子筛上苯与丙烯分子的吸附行为. 由分子筛内吸附质粒子云分布可知, 在100 kPa时, 丙烯在分子筛上的吸附量要远远大于苯的吸附量. 由吸附相互作用能分布来看, 苯与分子筛之间相互作用能比丙烯与分子筛之间的相互作用能更负, 这就使苯分子的吸附相对于丙烯分子稳定. 相对而言, 温度变化对丙烯吸附影响远大于对苯吸附的影响, 如100 kPa时, 温度由298 K升高至443 K导致丙烯分子吸附量明显减少, 由每8个晶胞吸附98个丙烯分子减少到80个; 而对苯分子吸附却没有显著的影响. β分子筛上存在着苯和丙烯的竞争吸附, 并且吸附分子之间存在相互作用使两者与分子筛之间的相互作用能分布改变. 在压力范围1×10-3~5.0 kPa, 不同温度下苯与丙烯在分子筛内吸附等温线的模拟结果表明, 在较高温度、较低压力下丙烯的吸附量要小于苯的吸附量.  相似文献   

7.
芳香类化合物在ITQ-1分子筛中吸附特性的蒙特卡罗模拟   总被引:1,自引:0,他引:1  
用巨正则统计系综蒙特卡罗模拟研究了苯、甲苯以及间二甲苯分子在ITQ-1分子筛中的吸附特性.从这3种分子的粒子分布云图上,可发现分子的扩散和吸附主要在十二元环超笼内发生,在十元环通道内的吸附和扩散则相对较难.从一系列不同压力下的蒙特卡罗模拟还预测了3种分子的吸附等温线,预测结果与实验结果相符.这3种分子在一定压力下,都可通过十元环通道或连接十二元环超笼的十元环窗口到达分子筛孔道内部,达到较好的吸附平衡状态.  相似文献   

8.
在小型固定流化床(FFB)装置中研究了Y分子筛与ZSM-5分子筛催化剂上的十氢萘裂化开环反应性能,考察了温度和剂油比对Y分子筛开环反应催化性能的影响。结果表明,十氢萘在分子筛催化剂上通过环烷环开环反应生成丙烷、丙烯、丁烷、丁烯、甲基戊烷和环戊烷、环己烷等非芳烃以及苯、C1~4烷基取代苯等单环芳烃,并通过脱氢缩合反应生成四氢萘、萘、甲基萘和菲、芘等多环芳烃甚至焦炭等。由于扩散和吸附性能的影响,ZSM-5分子筛催化剂的裂化开环反应选择性比Y分子筛催化剂的高,因此,十氢萘环烷环开环与脱氢缩合反应的相对比例(NRO/DHC)在ZSM-5分子筛催化剂上较高。在Y分子筛催化剂上,温度为450~550 ℃、剂油比为3~9,反应温度升高或者剂油比增加,双分子氢转移以及脱氢缩合反应增强,从而导致环烷环开环产物选择性降低。  相似文献   

9.
本文提出由长焰煤制粒状富氮用炭分子筛的工艺路线,并考察了影响其分离空气性能的制备工艺条件和分离条件。热处理温度为700—900℃时产品的空分性能较好。在实验室的变压吸附条件下可将空气中O_2含量降至4%以下。在重量法吸附装置上测定了25℃时CO_2、n-C_4~0和i-C_4~0的吸附等温线,用吸附分子探针法确定炭分子筛的微孔孔径在3.3—4.3A 之间。用D—A 方程能较好地描述CO_2吸附等温线,参数n 约等于2。  相似文献   

10.
应用蒙特卡罗(MC)模拟方法研究了1,3-丁二烯、1-丁烯、正丁烷三种C4烃在FAU、BEA、LTL三种分子筛中的吸附行为. 模拟分别得到了298 K时这些C4烃的纯组分在分子筛中的吸附等温线、吸附质分布和吸附热. 结果表明, 在饱和吸附状态下这些C4烃在FAU分子筛中的吸附量最大, 在BEA分子筛中的吸附量居中, 在LTL分子筛中的吸附量最少. 对于同一种分子筛来说, 正丁烷在其中的等量吸附热最大, 1-丁烯居中, 1,3-丁二烯最小. 对于同一种C4烃来说, 它在LTL分子筛中的吸附热与在BEA分子筛中的吸附热相近, 并且高于在FAU分子筛中的吸附热. 还模拟了543 K、2.0 MPa时这些C4烃的三元混合组分在分子筛中的吸附, 发现正丁烷的吸附量占的比例最大, 1-丁烯居中, 1,3-丁二烯最少.  相似文献   

11.
This work presents the effect of NaCl on the adsorption of sodium dodecyl sulfate (SDS) at the cyclopentane (CP) hydrate-water interface. The adsorption isotherms and the SDS solubility in NaCl solutions are obtained using liquid-liquid titrations. The solubility data are determined at typical hydrate forming temperatures (274-287K) to ensure that the adsorption isotherms are obtained within SDS solubility limits in NaCl solutions. The isotherms show L-S (Langmuir-Step) type behaviors with 1mM and 10mM NaCl solutions while L type isotherm is determined for 25mM NaCl solutions due to the low SDS solubility in this salt concentration. Zeta potentials of CP hydrate particles in the aqueous solutions support the shape of the adsorption isotherm with the 1mM NaCl solution. The 1mM NaCl case shows the highest SDS adsorption amount among the cases with 0mM, 10mM, and 25mM NaCl solutions. In this case, the competition for adsorption between Cl(-) and DS(-) is not as strong compared to the 10 and 25mM NaCl cases and the presence of Na(+) ions may reduce the repulsion between DS(-) ions, which results in a higher adsorption of DS(-) ions and enhanced enclathration.  相似文献   

12.
The hydrogen adsorption properties and uptake capacities of the A, X and ZSM-5 types of zeolites were investigated at temperatures of 77, 195 and 293 K and pressures up to 7MPa, using a conventional volumetric adsorption apparatus. All hydrogen adsorption isotherms were basically type I, but the maximum in isotherm,a unique feature of supercritical adsorption, was observed at high pressures of 2-5 MPa at 77 K. The isosteric heats of adsorption were determined from the isotherms and the factors that influence their variations were discussed. Different types of zeolites exhibited remarkably different hydrogen uptake, based on both the framework structure and the nature of the cations present. The highest gravimetric storage capacity of 2.55wt% was obtained for NaX-type zeolite at 4 MPa and 77 K. In CaA, NaX and ZSM-5 types of zeolites,hydrogen uptakes were proportional to the specific surface areas, which were associated with the available void volumes of the zeolites. A threshold in hydrogen adsorption observed in NaA and KA was attributed to a pore blocking effect by large cations in KA. A ratio of the kinetic diameter of adsorbate to the effective opening diameter of zeolite was used to judge the blocking effect for physisorption.  相似文献   

13.
NaY zeolite particles with a high surface area of 723 m2/g were synthesized by a hydrothermal method. Adsorption isotherms of pure gases CO2 and N2 on the synthesized NaY particles were measured at temperatures 303, 323, 348, 373, 398, 423, 448 and 473 K and pressures up to 100 kPa. It was found that the adsorption isotherm of CO2 on the synthesized zeolite is higher than that on other porous media reported in the literature. All measured adsorption isotherms of CO2 and N2 were fitted to adsorption models Sips, Toth, and UNILAN in the measured temperature/pressure range and Henry’s law adsorption equilibrium constants were obtained for all three adsorption models. The adsorption isotherms measured in this work suggest that the NaY zeolite may be capable of capturing CO2 from flue gas at high temperatures. In addition, isosteric heats of adsorption were calculated from these adsorption isotherms. It was found that temperature has little effect on N2 adsorption, while it presents marked decrease for CO2 with an increase of adsorbate loading, which suggests heterogeneous interactions between CO2 and the zeolite cavity.  相似文献   

14.
This molecular simulation work focuses on the adsorption of water in a priori hydrophobic silicalite-1, a microporous ordered silica. The water-water interactions are described with the SPC model, while water-silica interactions are calculated in the framework of the PN-TrAZ model. The water adsorption isotherm at 300 K, the configurational energies, and the isosteric heat of adsorption are calculated by the grand canonical Monte Carlo (GCMC) simulation method. The thermodynamic integration scheme allows one to calculate the grand potential along the adsorption isotherm. The adsorption results are compared with experiments, showing only qualitative agreement. Indeed, the simulations do not reproduce the expected hydrophobicity of silicalite (Eroshenko, V.; Regis, R.-C.; Soulard, M.; Patarin, J. C. R. Phys. 2002, 3, 111). This indicates that common models used to describe confined polar molecules are far from being operative. In this work, it is shown, on the basis of periodic ab initio calculations, that confined water molecules in silicalite have a dipole value roughly 10% smaller than that in the bulk liquid phase, indicating that the environment felt by a confined water molecule in silicalite pores is not equivalent to that in the bulk liquid. This suggests that effective intermolecular potentials parametrized for bulk water are inefficient to describe ultraconfined water molecules. Reducing the SPC water dipole moment by 5% (i.e., decreasing water partial charges in magnitude) in GCMC calculations does allow reproducing the experimental water/silicalite isotherm at 300 K.  相似文献   

15.
Adsorption equilibria of nitrogen and methane on a mesoporous silica gel were measured over a temperature range from the sub- to the supercritical region. Determination of the compressibility factor shows a significant effect on the experimentally measured isotherms under conditions rho(g)/rho(c)>0.3. The transition of adsorption mechanisms in passing over the critical temperature was proven by the transformation of isotherms from type II to type I. The characteristic feature of subcritical adsorption was still observed at a temperature 8 K higher than the critical and the critical depletion phenomenon was clearly shown on such an isotherm. The limit quantities defined in different ways for the supercritical adsorption are in reasonable agreement, indicating the existence of an upper limit state of the supercritical adsorbate.  相似文献   

16.
An interesting adsorption behavior of racemic methyl mandelate on a tris-(3,5-dimethylphenyl)carbamoyl cellulose chiral stationary phase was theoretically and experimentally investigated. The overloaded band of the more retained enantiomer had a peculiar shape indicating a type V adsorption isotherm whereas the overloaded band of the less retained enantiomer had a normal shape indicating a type I adsorption behavior. For a closer characterization of this separation, adsorption isotherms were determined and analyzed using an approach were Scatchard plots and adsorption energy distribution (AED) calculations are combined for a deeper analysis. It was found that the less retained enantiomer was best described by a Tóth adsorption isotherm while the second one was best described with a bi-Moreau adsorption isotherm. The latter model comprises non-ideal adsorbate-adsorbate interactions, providing an explanation to the non-ideal adsorption of the more retained enantiomer. Furthermore, the possibility of using the Moreau model as a local model for adsorption in AED calculations was evaluated using synthetically generated raw adsorption slope data. It was found that the AED accurately could predict the number of adsorption sites for the generated data. The adsorption behavior of both enantiomers was also studied at several different temperatures and found to be exothermic; i.e. the adsorbate-adsorbate interaction strength decreases with increasing temperature. Stochastic analysis of the adsorption process revealed that the average amount of adsorption/desorption events increases and the sojourn time decreases with increasing temperature.  相似文献   

17.
We have measured the adsorption isotherms of water on a single surface of freshly cleaved mica with K+ on the surface, and on mica where the K+ has been exchanged for H+. Using a very sensitive interferometric technique, we have found a significant difference between the two isotherms at submonolayer coverage, for relative vapor pressures p/p0 < 0.5. The K+-mica isotherm shows a pronounced convexity, suggesting distinct adsorption sites, whereas the H+-mica isotherm is flatter. The two isotherms converge above monolayer coverage. The results give a graphic demonstration of the importance of nanoscale surface heterogeneities for vapor adsorption at submonolayer coverage.  相似文献   

18.
The adsorption isotherms of Xe vapor at 196 K and supercritical Xe at 300 K on activated carbon fibers of different pore widths were gravimetrically measured. The adsorption isotherms of Xe vapor were compared with the N(2) adsorption isotherms. A Dubinin-Radushkevich (DR) plot of the adsorption isotherms of Xe vapor showed a good linearity, indicating that Xe vapor is adsorbed by the representative micropore filling mechanism. The adsorption isotherms of supercritical Xe were approximated by the Langmuir equation. The saturated adsorption amounts of supercritical Xe, W(L), were in the range of 0.14 to 0.22 ml g(-1). The adsorption isotherms of supercritical Xe were described by the supercritical DR equation, which provides the quasisaturated vapor pressure P(0q). Both P(0q) and W(L) lead to the reduced isotherm, which can describe three isotherms. The obtained reduced isotherm derived from the isotherms of supercritical Xe could describe even those of Xe vapor. Hence, both Xe vapor and supercritical Xe should be adsorbed by the same mechanism. The isosteric heat of Xe adsorption was greater than the enthalpy of vaporization of Xe by more than 12 kJ mol(-1). These results suggest that Xe molecules are stabilized in the form of a cluster in micropores even at 300 K. Copyright 2000 Academic Press.  相似文献   

19.
A?conceptual adsorption process for the recovery and purification of biobutanol is proposed. Different porous materials are tested on their ability to perform the adsorptive separations relevant to the process. The metal-organic framework ZIF-8, silicalite zeolite and active carbon were compared with respect to their adsorption capacity of 1-butanol dissolved in water, as obtained in static and dynamic conditions by respectively batch and breakthrough measurements at room temperature. Batch experimentation showed that other compounds present in a real ABE fermentation have no significant effect on the adsorption of 1-butanol on ZIF-8. The breakthrough separation of 1-butanol from an aqueous ABE mixture was performed with a ZIF-8 packed column. The desorption of 1-butanol from a saturated ZIF-8 packed column by a stepwise increase of the temperature to 423?K in combination with a purge of a nitrogen gas (60?ml/min) shows that 1-butanol desorbs at low temperature from ZIF-8. Adsorption isotherms of ethanol, 1-butanol and water in liquid phase on the zeolite SAPO-34 were determined by batch adsorption at 298?K. Also the separation of an ethanol/1-butanol mixture and the removal of ethanol from 1-butanol could be achieved with a SAPO-34 packed column. From this experimental work, two materials—ZIF-8 and SAPO-34—thus emerged as suitable adsorbents for the recovery and purification of biobutanol by adsorption.  相似文献   

20.
Adsorption/desorption isotherms of supercritical methane on superactivated carbon have been measured in the range of 0-10 MPa and 233-333 K (20 K interval). The reversibility of the physical adsorption process is acknowledged. The heat of adsorption of 16.5 kJ/mol is determined from the isotherms, and a new modeling strategy for isotherms with maximum is presented. The model yields fits to the experimental isotherms with precision of ?%, maintaining the constancy of the characteristic energy of adsorption. The exponent of the model equation expresses the pore size distribution feature of the adsorbent. The density of the supercritical adsor-bate is evaluated as a parameter of the model. It is shown that the conventional isotherm theory works too at supercritical condition if the limit state of supercritical adsorption is introduced into isotherm modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号