首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
室温下, 在水溶液中将铵根离子和水分子插入到商用V2O5纳米颗粒的层间, 制得了层状的钒青 铜[(NH4)2V6O16·H2O]纳米片. 该纳米片的尺寸为2~10 μm, 厚度为50~250 nm. 与商用V2O5纳米颗粒相比, (NH4)2V6O16·H2O纳米片用作锂离子电池(LIBs)的阳极材料时, 其性能得到较大提升, 包括大的可逆放电容量 (0.1 A/g时为1148 mA·h/g)、 出色的循环性能(循环70圈后在0.1 A/g时具有1002 mA·h/g的高容量)和高倍率性能(在0.1 A/g时具有1070 mA·h/g的可逆性能). 研究结果表明, (NH4)2V6O16·H2O纳米片可以作为锂离子电池优良的阳极材料, 也有望应用于其它(如钠离子电池和锌离子电池等)可再充电电池.  相似文献   

2.
采用密度泛函理论计算和实验研究形貌可控制备氧化铁作为高效载氧体用于化学链燃烧的可行性. 首先从理论上对比分析Fe2O3高指数晶面[104]和低指数晶面[001]的反应活性及深层还原反应机理. 表面反应结果显示, Fe2O3[104]氧化CO的反应活性远高于Fe2O3[001], Fe2O3[104]被还原成为低价的铁氧化物或单质, 这些低价的铁氧化物或单质可被O2氧化再生. 载氧体和CO深层反应结果显示Fe2O3[104]可被CO彻底还原成Fe单质, Fe2O3[104]释放氧能力强, 反应活性高; 而Fe2O3[001]还原到一定程度后反应能垒高, 抑制表面进一步还原, 释放氧能力有限. 最后, 实验结果进一步证明了Fe2O3[104]作为载氧体用于化学链燃烧的高反应活性及稳定性.  相似文献   

3.
报道了Na2Ti3O7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na2Ti3O7纳米片。此外,腐蚀后的钛片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g–1的电流密度下具有175 mAh·g–1的可逆容量,在2000 mA·g–1的电流密度下循环3000周后,其容量仍保持120 mAh·g–1,容量保持率为96.5%。Na2Ti3O7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na2Ti3O7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na2Ti3O7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

4.
研究了4种不同电荷的Co(Ⅲ)金属配合物跨人红细胞膜的动力学,并测定了它们跨人红细胞膜的一级反应动力学速率常数,发现[Co(C2O4)3]3-的跨膜速率明显高于[Co(en)3]3+,[Co(en)2(C2O4)]+和[Co(en)(C2O4)2]-,后3种配合物的跨膜速率常数随正电荷的减少略有增加,跨膜机制为简单扩散.[Co(C2O4)3]3-的跨膜速率受阴离子通道抑制剂DIDS明显抑制,抑制率为51.95%,推测其跨膜机制为部分经阴离子通道协同简单扩散过膜.人红细胞摄入L-[Co(C2O4)3]3-的速率明显大于D-[Co(C2O4)3]3-,显示了一定的手性选择性.  相似文献   

5.
梁英  刘华俊  鲁俊  田志高 《化学学报》2010,68(19):1977-1980
以Bi(NO3)3和氨水为原料、水溶性淀粉为分散剂, 采用水热法制备了Bi2O3纳米片, 用X射线衍射(XRD)、扫描电子显微技术(SEM)和氮气吸附-脱附等对材料进行了表征. 结果表明Bi2O3纳米片厚度分布比较窄, 比表面积达到9.26 m2/g. 同时, 采用循环伏安法和充放电仪测试了Bi2O3纳米片的电化学性能, 结果显示其具有一定的电化学活性.  相似文献   

6.
金属氧化物可通过电化学转换反应与锂离子及钠离子发生多电子可逆结构转换,是一类极具应用前景的高容量锂离子和钠离子电池负极材料。实验以氧化石墨烯和铁盐为前驱体,采用简单的溶剂法,成功将Fe2O3纳米单晶粒子均匀负载于石墨烯的导电片层上,获得Fe2O3/rGO(还原氧化石墨烯)纳米复合材料。复合电极在锂离子和钠离子电池中都表现出优异的充放电性能和循环稳定性。实验结果表明石墨烯的包覆不仅能降低Fe2O3发生转换反应的电荷传递阻抗,而且能够稳定电极在循环过程中带来的结构转变,极大改善电极大电流充放能力和循环稳定性。本研究为发展高容量的锂离子和钠离子电池负极材料提供了可行的途径。  相似文献   

7.
本工作在水热法制备WO3过程中直接引入Cr3+作为改性剂,其在非(001)晶面的选择性吸附,实现了WO3形貌从纳米棒到[001]取向超细纳米线(UNWs)的转变,最终所得Cr-WO3UNWs催化剂的比表面积可达297m2/g。此外,Cr3+的晶格掺杂和减缓结晶作用有效增加了WO3表面氧空位(L酸位点)浓度。在苯乙烯选择性氧化制苯甲醛反应中,最佳条件下(70℃、r(n((H2O2)/n苯乙烯)=2.0、6 h、m=30 mg),Cr-WO3 UNWs分别将苯乙烯转化率和苯甲醛选择性从单一WO3纳米棒的19.0%和49.6%提升到72.0%和84.6%,其催化性能的提升归结于以下两点:第一,超大比表面积可提供充足的反应活性位点;第二,L酸位点可将H2O2活化为W-O...  相似文献   

8.
利用水热法和直接沉淀法, 设计合成了5例由过渡金属(TM)-联咪唑配阳离子与Dawson型钨磷酸阴离子构成的多金属氧酸盐(POM)基有机-无机杂化化合物[Ni(H2biim)3]4[Ni(H2biim)2(P2W18O62)2]·2H2O(1), [CoIII(H2biim)3]2[P2W18O62]·8H2O(2), [Cu(H2biim)2]3[P2W18O62]·4H2O(3), [CoII(H2biim)3]2H2[P2W18O62]·9H2O(4)和 [Ni(H2biim)3]3[P2W18O62]·2H2O(5); 并利用X射线单晶衍射分析(SC-XRD)、 红外光谱(IR)和热重-差热分析 (TG-DTA)等对其进行了表征. 化合物1~5作为载体用于固定辣根过氧化物酶(HRP)时, 显示出了较高的酶固定化能力. 另外, 利用圆二色光谱(CD)和激光扫描共聚焦显微镜(LSCM)等方法评价了固定化酶HRP/1~HRP/5的重复使用性、 储存稳定性和检测过氧化氢(H2O2)的性能. 由于该类POMs与HRP间存在强的相互作用, 利用简单的物理吸附法即可实现POMs对HRP的固载. POMs对酶的固定不但提高了HRP对使用及储存环境的耐受性, 同时也拓展了POMs在酶固定化领域的应用.  相似文献   

9.
使用DFT+U的方法研究了F,Si掺杂CeO2(001)表面的结构和电子结构,分析了F,Si掺杂对CeO2(001)表面还原性能的影响。结果表明:F,Si掺杂的CeO1.963(001)体系中表层氧空位形成能均小于次表层氧空位形成能。CeO1.963F0.037(001)面的氧空位形成能比CeO1.963(001)面的要大,而Ce0.926Si0.074O1.963(001)面的氧空位形成能比CeO1.963(001)面的要小。Si掺杂的CeO2(001)面局部晶格发生畸变,结构变得不稳定。CeO2(001)面的Ce 4f电子态部分占据费米能级,禁带宽度变为零,并且上下自旋电子态不对称;CeO1.926F0.037-sur面的Ce 4f电子态和O 2p电子态分布变得局域,费米能级处产...  相似文献   

10.
以苯并15冠5和钼多酸为原料, 用水热法合成了两个新颖的超分子配合物[Na(B30C10)][Mo6O19] (1)和[NaL(CH3CN)][NaL][α-PMo12O40][NaL2] (L=B15C5) (2), 并用单晶X射线衍射测定了它们的晶体结构. 配合物1属单斜晶系, 空间群为C2/m, 它包含三个基本单元: Na, B15C5和Mo6O , 冠醚分子和Na配位, 并通过静电作用力和多酸分子相连. 配合物2属三斜晶系, 空间群为P-1, 它包含一个[α-PMo12O40]3-离子和三个钠离子配合物. [Na(B15C5)]通过Mo-O-Na-O键和多酸阴离子相连.  相似文献   

11.
黄俊达  朱宇辉  冯煜  韩叶虎  谷振一  刘日鑫  杨冬月  陈凯  张相禹  孙威  辛森  余彦  尉海军  张旭  于乐  王华  刘新华  付永柱  李国杰  吴兴隆  马灿良  王飞  陈龙  周光敏  吴思思  卢周广  李秀婷  刘继磊  高鹏  梁宵  常智  叶华林  李彦光  周亮  尤雅  王鹏飞  杨超  刘金平  孙美玲  毛明磊  陈浩  张山青  黄岗  余丁山  徐建铁  熊胜林  张进涛  王莹  任玉荣  杨春鹏  徐韵涵  陈亚楠  许运华  陈子峰  杲祥文  浦圣达  郭少华  李强  曹晓雨  明军  皮欣朋  梁超凡  伽龙  王俊雄  焦淑红  姚雨  晏成林  周栋  李宝华  彭新文  陈冲  唐永炳  张桥保  刘奇  任金粲  贺艳兵  郝晓鸽  郗凯  陈立宝  马建民 《物理化学学报》2022,38(12):2208008
能源的存储和利用是当今科学和技术发展中的重大课题之一,尤其是作为高效的电能/化学能转化装置的二次电池相关技术一直是科学家研究的热点领域。在此背景下,本文较为系统地介绍目前二次电池的重要研究进展,将从二次电池的发展历史引入,再到其相关的基础理论知识的介绍。随后较为详细地讨论当前不同体系的二次电池及相关应的关键材料的研究进展,涉及到锂离子电池、钠离子电池、钾离子电池、镁离子电池、锌离子电池、钙离子电池、铝离子电池、氟离子电池、氯离子电池、双离子电池、锂-硫(硒)电池、钠-硫(硒)电池、钾-硫(硒)电池、多价金属-硫基电池、锂-氧电池、钠-氧电池、钾-氧电池、多价金属-氧气电池、锂-溴(碘)电池、水系金属离子电池、光辅助电池、柔性电池、有机电池、金属-二氧化碳电池等。此外,也介绍了电池研究中常见的电极反应过程表征技术,包括冷冻电镜、透射电镜、同步辐射、原位谱学表征、磁性表征等。本文将有助于研究人员对二次电池进行全面系统的了解与把握,并为之后二次电池的研究提供很好的指导作用。  相似文献   

12.
提高光催化分解水制氢的效率是能量转换领域的关键挑战。本研究首先合成了二维多孔氮化碳(PCN),然后在二维PCN上原位生长了一维W18O49 (WO),形成了一种新型的梯形(S型)异质结。该异质结可以加快界面电荷的分离和转移,赋予WO/PCN体系更好的氧化还原能力。此外,具有多孔结构的PCN提供了更多的催化活性位点。与WO和PCN相比,20% WO/PCN复合材料具有更高的H2产率(1700 μmol·g-1·h-1),是PCN (30 μmol·g-1·h-1)的56倍。本研究提供了一种新S型光催化剂用于光催化制氢领域。  相似文献   

13.
形貌控制和异质结构建是提升光催化剂性能的有效策略。本文采用In2O3修饰三维纳米花MoSx并构建S型异质结,为电子的传输提供了特殊的转移途径。通过合理调控In2O3的负载量,MoSx/In2O3的最佳产氢速率能够达到6704.2 μmol∙g−1∙h−1,是纯MoSx的1.8倍。采用荧光光谱和电化学测试证实复合材料中内部电子和空穴对的分离效率得到了有效的提升,并利用紫外漫反射测试和羟基自由基实验推测了析氢机理。  相似文献   

14.
与其他的锂电池体系相比,锂-空气电池具有最高的理论比能量,被认为有潜力成为终极能量转换和储存装置。目前的锂-空气电池常常使用气体钢瓶提供纯氧气,而非空气中的氧气,这种电池设计极大降低了锂-空气电池的能量密度和实用性。然而,当空气作为锂-空气电池的氧气供给源时,二氧化碳作为杂质会引起严重的副反应,从而降低锂-空气电池的性能。要解决二氧化碳引起的副反应,理解其反应机制至关重要。本文综述了锂-空气电池中有关二氧化碳诱发的化学/电化学反应的研究进展; 总结了可缓解二氧化碳负面效应的有效策略。此外,对二氧化碳选透膜材料和分离技术用于锂-空气电池进行了展望。  相似文献   

15.
Layered graphitic carbon nitride (g-C3N4) is a typical polymeric semiconductor with an sp2 π-conjugated system having great potential in energy conversion, environmental purification, materials science, etc., owing to its unique physicochemical and electrical properties. However, bulk g-C3N4 obtained by calcination suffers from a low specific surface area, rapid charge carrier recombination, and poor dispersion in aqueous solutions, which limit its practical applications. Controlling the size of g-C3N4 (e.g., preparing g-C3N4 nanosheets) can effectively solve the above problems. Compared with the bulk material, g-C3N4 nanosheets have a larger specific surface area, richer active sites, and a larger band gap due to the quantum confinement effect. As g-C3N4 has a layered structure with strong in-plane C-N covalent bonds and weak van der Waals forces between the layers, g-C3N4 nanosheets can be prepared by exfoliating bulk g-C3N4. Alternatively, g-C3N4 nanosheets can otherwise be obtained through the anisotropic assembly of organic precursors. Nevertheless, some of these methods have various limitations, such as high energy consumption, are time consuming, and have low yield. Accordingly, developing green and cost-effective exfoliation and preparation strategies for g-C3N4 nanosheets is necessary. Herein, the research progress of the exfoliation and preparation strategies (including the thermal oxidation etching process, the ultrasound-assisted route, the chemical exfoliation, the mechanical method, and the template method) for two-dimensional C3N4 nanosheets are introduced. Their features are systematically analyzed and the perspectives and challenges in the preparation of g-C3N4 nanosheets are discussed. This study emphasizes the following: (1) The preparation method of g-C3N4 nanosheets should be properly selected according to the practical application needs. Additionally, various strategies (such as chemical method and ultrasonic method) can be combined to exfoliate nanosheets from bulk g-C3N4; (2) More reasonable nano- or even subnanostructured g-C3N4 nanosheets should be continuously explored; (3) Novel modification strategies, such as defective engineering, heterojunction construction, and surface functional group regulation, should be introduced to improve the reactivity and selectivity of the g-C3N4 nanosheets; (4) The application of in situ characterization techniques (such as in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), electron spin resonance (ESR) spectroscopy, and Raman spectroscopy) should also be strengthened to monitor the detailed catalytic process and investigate the g-C3N4 nanosheet structure-efficiency relationship. (5) To gain a deeper understanding of the relationship between the macroscopic properties and the microscopic structure, the combination of theoretical calculations and experimental results should be strengthened, which will be beneficial for exploiting high-quality g-C3N4 nanosheets.   相似文献   

16.
利用太阳能驱动生产高能量密度的H2O2太阳能燃料引起了广泛关注,但目前光催化剂缓慢的动力学限制了其实际应用。本文制备一种聚多巴胺(PDA)改性的反蛋白石结构ZnO(ZnO@PDA)光催化剂,用于可持续性的光催化产H2O2。由于电子的转移,因此当PDA与ZnO接触后,会在界面处形成一个从PDA指向ZnO的内建电场。在内建电场和能带弯曲的驱动下,ZnO导带中的光生电子与PDA最高占据分子轨道(HOMO)中的空穴复合,符合梯型异质结的电荷转移和分离途径。这种独特的梯型异质结确保了有效的电子或空穴的分离并且留存下具有强氧化还原能力的光生载流子。此外,与纯ZnO相比,反蛋白石结构的ZnO@PDA具有更强的光吸收能力。实验表明,归因于光吸收能力的提高,光生载流子的有效分离和强氧化还原能力,负载0.03% (原子分数) PDA的ZnO样品具有最佳的产H2O2性能(1011.4 μmol·L-1·h-1),分别是纯ZnO和PDA的4.4和8.9倍。  相似文献   

17.
钠离子电池是目前最有前景及可行性的新兴储能候选体系。对于钠离子电池而言,如何实现其电极材料的理性设计及构筑,是重要的科学问题。本文立足于钠离子/电子输运这一核心问题,从固态离子学视角探讨钠离子电池电极材料的设计策略。首先,对于体相电极材料,输运特性的明晰、调控以及缺陷化学模型的建立,是传统电极材料开发的关键。其次,对于纳米电极材料,随着尺寸的减小,电极材料的热力学性质、动力学特性以及钠离子微观储输机制都会发生相应变化,因此从纳米离子学视角,以尺寸效应调控电极材料具有重要的科学价值及现实意义。最后,无论对于体相材料还是纳米材料,从材料的本征输运特性出发,通过电化学电路的设计和构筑来优化电极动力学,可以为钠电电极材料的理性设计及可控制备提供理论指导。我们相信,通过本文系统地对钠离子电池电极材料设计策略的梳理,必将对钠离子电池的开发,提供有意义的指导,并为最终的产业化打下良好的基础。  相似文献   

18.
利用一步水热法制备了原位掺杂Fe的Silicalite-1分子筛载体,浸渍得到相应的Pt基催化剂,用于丙烷的直接脱氢反应。作为对比,也制备了Pt/Silicalite-1和共浸渍的Pt1Fe2/Silicalite-1催化剂。研究发现较之Pt/Silicalite-1催化剂,原位掺入Fe的Pt/Fe-Silicalite-1催化剂反应性能有了很大程度地提高,而共浸渍制备的Pt1Fe2/Silicalite-1催化剂反应性能有所降低。在Pt/Fe-Silicalite-1催化剂上,尽管丙烷的初始转化率略有降低,但丙烯的选择性和催化稳定性大幅提高。反应8 h后丙烷转化率稳定在43.7%、丙烯选择性达到98.0%;且在80 h内基本保持不变。深入表征发现Fe的原位掺入使得Pt物种配位饱和度提高,避免了丙烷的深度脱氢使得丙烯选择性提高、结焦速率降低;且通过Fe-Pt之间电子转移,使得Pt上的电子云密度增强,增强了丙烯的脱附能力,进一步降低了结焦速率。另外载体中的Fe位点可以锚定Pt,使得Pt物种不易聚集,从而进一步提高了Pt/Fe-Silicalite-1的稳定性,使得该催化剂在反应80 h后仍保持高转化率和选择性。  相似文献   

19.
由于水分解在绿色能源领域的重要作用,能够在碱性介质中进行析氢(HER)和析氧(OER)反应的双功能电催化剂具有重要的应用价值。本文报道一种具有丰富缺陷的表面改性NiCo2O4纳米线(NWs),在碱性介质中作为一种高效的整体水裂解电催化剂。X射线光电子能谱(XPS)分析表明,Co2+/Co3+比值的增加是表面修饰NiCo2O4纳米线具有优异双功能电催化性能的重要原因。结果表明,在1.0 mol·L-1 KOH溶液中,通过有机配体主导的表面改性,优化后的NiCo2O4纳米线在电流密度达到10 mA·cm-2时的HER过电位仅为83 mV,OER过电位仅为280 mV。更重要的是,有机配体表面改性后的NiCo2O4纳米线表现出了出色的水分解性能,在2.1 V电压下达到了100 mA·cm-2的电流密度。目前的工作凸显了提高NiCo2O4 NWs尖晶石结构中Co2+含量对促进整体水裂解的重要性。  相似文献   

20.
天然气、油田伴生气、高炉煤气等化工生产过程中伴生COS气体,不仅会腐蚀管道和毒害催化剂,还会严重污染环境并危害人类健康。COS催化水解反应可在温和条件下高效的将COS脱除,是最具应用前景的COS脱除技术之一。碱金属元素因其具有独特的电子供体性质、表面碱性和静电吸附等特性,常被用作助催化剂以提高Al2O3的COS催化水解性能。近年来,以钾为助剂改性的Al2O3催化剂(K2CO3/Al2O3)在COS催化水解反应中得到广泛的应用,但由于负载在Al2O3上的K物种的组成复杂,目前研究者对K2CO3/Al2O3催化剂上COS水解机理的理解仍存在一定的困惑和争议。本论文通过湿法浸渍法合成出一系列钾盐和钠盐改性的Al2O3催化剂,并利用各类先进的表征技术对这些催化剂进行分析。活性测试表明,以K2CO3、K2C2O4、NaHCO3、Na2CO3和NaC2O4改性Al2O3催化剂均有助于COS的水解。其中K2CO3/Al2O3拥有最佳的COS水解性能,连续运行20 h后其COS转化率仍高于~93%,远远优于未改性的Al2O3 (~58%)。我们利用原位红外光谱和X射线光电子能谱探明了反应过程中催化剂的化学结构特征,阐明了H2O分子在K2CO3/Al2O3上的水解作用机制。原位红外表明COS在K2CO3/Al2O3上的水解过程中形成了硫代碳酸氢盐中间产物。X射线光电子能谱表征证明催化剂的失活主要是因为催化剂表面积累了硫酸盐和单质硫。此外,我们还研究了水蒸气含量对COS水解性能的影响,研究发现,由于H2O和COS分子在催化剂表面存在竞争吸附,过量的H2O会引起催化活性的下降。上述研究表明,K2CO3/Al2O3催化剂上COS水解性能的提高主要是形成了HO-Al-O-K界面活性位。更为重要的是,所制备的催化剂都是在模拟工业工况条件下进行的,这为后续的工业应用提供了宝贵理论指导。本工作为理解助剂钾在Al2O3催化剂上COS水解活性的增强提供了新的见解,这为未来设计稳定高效的COS水解催化剂打开了新的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号