首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
化学   4篇
物理学   1篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 78 毫秒
1
1.
天然气、油田伴生气、高炉煤气等化工生产过程中伴生COS气体,不仅会腐蚀管道和毒害催化剂,还会严重污染环境并危害人类健康。COS催化水解反应可在温和条件下高效的将COS脱除,是最具应用前景的COS脱除技术之一。碱金属元素因其具有独特的电子供体性质、表面碱性和静电吸附等特性,常被用作助催化剂以提高Al2O3的COS催化水解性能。近年来,以钾为助剂改性的Al2O3催化剂(K2CO3/Al2O3)在COS催化水解反应中得到广泛的应用,但由于负载在Al2O3上的K物种的组成复杂,目前研究者对K2CO3/Al2O3催化剂上COS水解机理的理解仍存在一定的困惑和争议。本论文通过湿法浸渍法合成出一系列钾盐和钠盐改性的Al2O3催化剂,并利用各类先进的表征技术对这些催化剂进行分析。活性测试表明,以K2CO3、K2C2O4、NaHCO3、Na2CO3和NaC2O4改性Al2O3催化剂均有助于COS的水解。其中K2CO3/Al2O3拥有最佳的COS水解性能,连续运行20 h后其COS转化率仍高于~93%,远远优于未改性的Al2O3 (~58%)。我们利用原位红外光谱和X射线光电子能谱探明了反应过程中催化剂的化学结构特征,阐明了H2O分子在K2CO3/Al2O3上的水解作用机制。原位红外表明COS在K2CO3/Al2O3上的水解过程中形成了硫代碳酸氢盐中间产物。X射线光电子能谱表征证明催化剂的失活主要是因为催化剂表面积累了硫酸盐和单质硫。此外,我们还研究了水蒸气含量对COS水解性能的影响,研究发现,由于H2O和COS分子在催化剂表面存在竞争吸附,过量的H2O会引起催化活性的下降。上述研究表明,K2CO3/Al2O3催化剂上COS水解性能的提高主要是形成了HO-Al-O-K界面活性位。更为重要的是,所制备的催化剂都是在模拟工业工况条件下进行的,这为后续的工业应用提供了宝贵理论指导。本工作为理解助剂钾在Al2O3催化剂上COS水解活性的增强提供了新的见解,这为未来设计稳定高效的COS水解催化剂打开了新的发展方向。  相似文献   
2.
圆柱形端面光源均匀性的讨论   总被引:2,自引:0,他引:2  
张朝民  沈丽娟  谢梅生 《大学物理》2004,23(9):35-36,40
建立了以圆柱反射取得面光源的模型,利用计算机对多变量的无穷级数进行求和计算,证明点光源发出的光经柱面反射到达另一端端口时,将形成一个光强分布均匀的面光源,分析了在不同精确度要求下均匀面光源与各参数之间的关系.  相似文献   
3.
郑笑笑  齐思慧  曹彦宁  沈丽娟  区泽棠  江莉龙 《催化学报》2021,42(2):279-287,后插18-后插20
硫化氢(H2S)广泛存在于以煤、石油和天然气等为原料的化工生产过程中,不仅腐蚀管道和设备,而且还会对健康和环境造成危害.因此,高效脱除H2S已成为工业废气减排的重点.在各种方法中,H2S选择性氧化技术(H2S+(1/2)O2→(1/n)Sn+H2O)由于具有设备需求低、反应不受热力学平衡限制、理论转化率可达100%等优点展现出了巨大的应用前景.实现这一过程的关键在于发展高效稳定的催化剂.作为一类新兴的多孔材料,金属-有机骨架材料(MOFs)由于其独特的结构和性质吸引了广泛的研究兴趣.与传统的脱硫材料相比,MOFs的优势主要体现在:1)高度分散的金属原子可作为催化活性中心;2)超高比表面积和规则的孔结构有利于反应物与活性位点之间的接触;3)结构可调变性高,通过在合成过程中有目的地引入配体或调控剂可产生额外的活性位点,满足特定催化的需求.基于以上特点可知,MOFs是一类有潜力的催化剂,但目前将其应用于H2S选择性氧化领域的研究尚处于起步阶段.本文以典型的铁基MOFs MIL-53(Fe)为研究对象,在制备MIL-53(Fe)过程中添加乙酸(HAc)作为调控剂,通过控制HAc的量,得到一系列具有不同形貌的MIL-53(Fe)-xH样品,并将其应用于H2S选择性氧化反应.SEM结果表明,在MIL-53(Fe)的合成过程中引入乙酸可以显著影响样品的形貌和尺寸.活化前后样品的XRD结果表明,HAc具有与对苯二甲酸(H2BDC)相似羧基基团,二者均可与Fe–O团簇配位.此外,TG-DSC结果证实,随着HAc加入量的提高,与Fe^3+形成配位的HAc/H2BDC比值随之增加.FT-IR和Raman结果进一步证明HAc成功地配位到MIL-53(Fe)的框架中,并且参与配位的HAc可通过真空活化移除从而暴露出Fe^3+不饱和位点.H2S选择性氧化测试表明,MIL-53(Fe)-xH的脱硫活性随着HAc含量的提高先增加然后降低,其中MIL-53(Fe)-5H活性最优.此外,MIL-53(Fe)-5H催化剂在连续运行55 h后仍能保持100%H2S转化率和86%硫选择性,性能远优于传统的Fe2O3催化剂.吡啶原位红外光谱结果表明,HAc的引入可以产生额外的Lewis酸性位点(LAS),LAS含量的不同是造成催化剂活性差异的主要原因.  相似文献   
4.
羰基硫(COS)广泛存在于以煤、焦炭、渣油和天然气等为原料生产的化工原料气中,不仅腐蚀管道设备,使下游催化剂发生硫中毒,而且还会造成环境污染.因此,COS脱除具有重要意义.在各种方法中,催化水解COS(COS+H2O→CO2+H2S)由于具有反应条件温和、转化率高和副反应少等优点越来越受重视.其关键在于发展高效的催化剂.近年来,金属-有机骨架材料(metal-organic frameworks,MOFs)由于其独特的物理化学性质引起人们广泛关注.与传统材料相比,MOFs不仅拥有超高的比表面积和规则的孔道结构,而且其结构具有可设计性强和易调变等特点,是一类非常有潜力的多相催化剂.然而,目前MOFs在催化水解COS方面的研究应用未见报道.此外,MOFs的合成方法主要有水/溶剂热法、扩散法和微波辅助加热法等.近年来新发展的电化学法具有合成效率高、操作方便和环境友好等优点,在材料合成中显示出巨大的优越性,但利用电化学法合成MOFs相关研究还较少. 本文采用快速温和的电化学方法制备了典型的Cu-MOFs(HKUST-1).该方法可以有效缩短反应时间,通过调节反应电压(15–30 V),在室温下电解3 h,可得到一系列HKUST-1样品.根据合成中设置的电压值,样品分别命名为HKUST-1-E15,HKUST-1-E20,HKUST-1-E25和HKUST-1-E30.XRD表征结果显示,不同电压下合成样品的XRD谱图与通过晶体数据拟合的HKUST-1图出峰位置基本一致.SEM结果表明,合成电压对样品形貌的影响很大.HKUST-1-E15主要呈长棒状结构,长约为15μm.随着电压的增大,HKUST-1-E20的形貌逐渐转变为较短的四棱柱体.当电压为25 V时,所得HKUST-1-E25呈八面体状.进一步提高合成电压,HKUST-1-E30颗粒变小,没有特殊形貌,并出现明显的团聚.COS水解测试结果显示,不同电压下合成样品的活性差异大,这主要是由于样品的形貌及比表面积差异引起的.其中,HKUST-1-E25样品的活性较好.在150°C下,该样品对COS的转化率接近100%,比水热法合成的HKUST-1-Hy的活性更高.在此基础上,进一步对活性测试过程的条件进行优化,发现当原料气流速为30 mL/min,水温为40°C时,催化剂的COS水解性能最优.此外,样品的活性稳定性测试结果显示,相比传统的氧化铜材料,HKUST-1是一类较稳定的COS水解催化剂.  相似文献   
5.
沈丽娟  梁若雯  吴棱 《催化学报》2015,(12):2071-2088
环境污染和能源短缺是制约当今社会发展的重大问题。光催化技术可直接利用太阳能驱动一系列重要的化学反应,具有能耗低、反应条件温和、无二次污染等优点,是解决这一问题的有效途径。实现这个过程的关键在于寻找设计高效的光催化剂。目前,光催化材料主要由无机半导体组成,其结构的改造和修饰难度很大,难以根据实际需要来控制其大小、形状以及物理化学特性。而有机化合物具有优良的分子剪裁与修饰的功能,但它们却在坚固性与稳定性等方面具有明显的缺点。因此如果能发展既具有无机化合物的稳定性又具有有机化合物的可剪裁与修饰性的新型光催化材料,无疑将促进光催化的发展和应用。金属-有机骨架材料(Metal-Organic Frameworks, MOFs)正是这样一类结合了无机物的稳定性和有机物的可修饰性的杂化材料。 MOFs是一类以金属阳离子为节点、有机配体为连接体的多孔配位聚合物的总称。这类材料不仅拥有超高的比表面积、丰富的拓扑结构,而且其结构兼具可剪裁性、可设计性、易调变等特点,在气体吸附储存、分离、传感等领域都有广泛的应用。在催化领域MOFs也显示出巨大的应用前景:(1)比表面积大,有利于对反应底物的吸附,促进催化反应的进行;(2)组成多样,结构具可剪裁性、可设计性、易调变等特点,通过对其金属单元或者配体进行改变修饰,可以实现对MOFs结构和性能的调变;(3)MOFs中金属-氧单元之间由有机配体隔开,相当于分立的半导体量子点,在反应中不易发生团聚。并且各个分立的金属-氧单元之间可能存在协同效应,有利于保持催化剂的稳定性和产生高的催化活性。因此, MOFs材料是一类非常有潜力的异相催化剂。光催化是一类典型的多相催化技术,与传统半导体光催化材料相比, MOFs由于具有可在分子水平进行灵活调控的优点,在光催化领域的应用更有优势。此外, MOFs结构上的确定性为研究催化剂的界面电荷迁移和光催化机理提供了便利条件,通过对其构-效关系的研究和光催化反应机理的探索反过来有助于我们从微观尺度上进一步认识光催化的本质。 MOFs材料在光催化领域已经有了初步的研究。越来越多的MOFs材料被成功应用于光催化降解染料、选择性转化有机物、光解水制氢和CO2还原等反应。典型的有MOF-5、UiO-66和MIL-125系列等。近年来,已有少量的文献综述了MOFs这类材料在光催化领域的研究。这些文献主要围绕MOFs在光催化过程中所起到的作用,比如作为催化剂、助催化剂或载体来展开;或者是从MOFs的光催化应用领域,比如污染物降解、产氢、二氧化碳还原、有机物转化来分类展开。本文围绕如何设计合成高效的MOFs光催化剂,综述了近年来国内外关于提高MOFs的光催化性能而开展的相关研究工作,包括理论研究MOFs的能级结构及化学性质、在MOFs配体上修饰官能团调变其能带结构、染料或者金属化合物光敏化MOFs提高其光吸收性能、负载金属/碳材料及半导体复合提高光生载流子的分离效率等。最后,本文对MOFs光催化剂的未来发展趋势进行了展望,强调开发新型的MOFs光催化剂,并加强对MOFs光催化机制的研究,有助于指导现有MOFs催化剂的改良和设计新型光催化剂。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号