首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
CH4与CO2干重整反应对于环境保护和天然气资源的合理利用具有重要意义。SiO2和Al2O3是适用于甲烷干重整反应的两种典型的催化剂载体。为了阐明这两种载体对催化剂性能的影响,本研究采用等体积浸渍法制备了Ni/Al2O3和Ni/SiO2催化剂,并利用BET、TEM、H2-TPR、XRD、TG和Raman等技术对还原和反应后的催化剂进行了表征。结果表明,由于载体的性质不同,Ni基催化剂在甲烷干重整中的催化性能也不同。Ni/SiO2催化剂的初始活性较高,但由于其金属-载体相互作用较弱,催化稳定性较差,在800℃下反应15h其催化活性急剧下降;较弱的金属-载体相互作用使得Ni/SiO2催化剂上的Ni颗粒较大,有利于积炭前驱物种的生成,导致催化剂快速失活。而对于Ni/Al2O3催化剂,金属-载体相互作用较强,Ni颗粒较小,但由于Ni与Al2O3生成了NiAlxOy物种,有效活性位减少,其催化活性相对较低,但催化稳定性较好,干重整反应进行50h其活性保持稳定;Ni与Al2O3之间较强的相互作用有利于形成小且稳定的Ni粒子,能减少积炭,因而具有优异的催化稳定性。  相似文献   

2.
为提高Ni2Mo3N在芳烃加氢过程中的耐硫性,采用络合物分解法制备以碱金属K为助剂的K-Ni2Mo3N催化剂,并应用于0.01%(质量分数)噻吩存在下的苯加氢反应体系。研究表明,电子型助剂K的添加对于Ni2Mo3N晶体结构无影响,但可以提高催化剂噻吩初始耐硫性至85%(苯转化率)。分析原因发现,碱金属助剂K改变了催化剂表面Ni物种电子状态,增加Ni原子表面电子密度,使得表面Ni呈富电子状态,削弱噻吩与Ni间相互作用。  相似文献   

3.
CH4与CO_2干重整反应对于环境保护和天然气资源的合理利用具有重要意义。SiO_2和Al_2O_3是适用于甲烷干重整反应的两种典型的催化剂载体。为了阐明这两种载体对催化剂性能的影响,本研究采用等体积浸渍法制备了Ni/Al_2O_3和Ni/SiO_2催化剂,并利用BET、TEM、H2-TPR、XRD、TG和Raman等技术对还原和反应后的催化剂进行了表征。结果表明,由于载体的性质不同,Ni基催化剂在甲烷干重整中的催化性能也不同。Ni/SiO_2催化剂的初始活性较高,但由于其金属-载体相互作用较弱,催化稳定性较差,在800℃下反应15 h其催化活性急剧下降;较弱的金属-载体相互作用使得Ni/SiO_2催化剂上的Ni颗粒较大,有利于积炭前驱物种的生成,导致催化剂快速失活。而对于Ni/Al_2O_3催化剂,金属-载体相互作用较强,Ni颗粒较小,但由于Ni与Al_2O_3生成了NiAlxOy物种,有效活性位减少,其催化活性相对较低,但催化稳定性较好,干重整反应进行50 h其活性保持稳定; Ni与Al_2O_3之间较强的相互作用有利于形成小且稳定的Ni粒子,能减少积炭,因而具有优异的催化稳定性。  相似文献   

4.
用溶胶凝胶法制备了一组NixCo1-xCoAlO4尖晶石型复合氧化物,并采用表面润湿浸渍K2CO3溶液进行了K掺杂改性,用于有氧气氛下的N2O催化分解反应.采用N2物理吸附、X-射线衍射(XRD)、扫描电镜(SEM)、H2-程序升温还原(H2-TPR)等技术对催化剂进行了表征,考察了催化剂组成、母液pH值、K负载量等制备参数对其催化活性的影响.结果表明,母液pH值为3、K/(Ni+Co)物质的量比为0.1的K/Ni0.15Co0.85CoAlO4催化剂具有较高的N2O分解活性,450 ℃ N2O可完全分解.助剂K的加入弱化了催化剂表面金属氧键,提高了催化剂的还原性、催化活性和抗水性.  相似文献   

5.
煤层气是储量十分丰富的煤炭伴生资源,也是煤炭开采中最大的安全隐患之一,同时还是重要的温室气体.研究煤层气的高效、清洁资源化利用具有资源和环境双重意义.因此,世界主要产煤国均十分重视煤层气的开发和利用.煤层气的主要成分是甲烷,目前主要通过两种方式实现其资源化利用:(1)直接转化,主要通过氧化偶联、催化氧化官能团化或脱氢芳构化等途径将其转化为高碳烃、含氧化合物及芳烃等;(2)间接转化,甲烷首先经催化重整反应制取合成气,而后再经Fischer-Tropsch合成、甲醇化和氢甲酰化等过程来合成饱和烃、烯烃、甲醇及其他含氧化物.对于前者,由于热力学限制,反应收率很低,应用前景较差,而经由合成气这一平台产物的间接转化路线被认为是一条甲烷资源化利用颇具工业前景的转化路线.因此,甲烷催化重整制合成气备受关注.研究表明,贵金属具有较好的甲烷重整催化性能,但其储量有限、价格昂贵的内在缺陷不利于甲烷大规模转化和资源化利用.Ni基催化剂具有与贵金属可比的催化活性和选择性,且其储量丰富,价格低廉,因此在甲烷重整反应中备受青睐.但是,相对于贵金属,Ni基催化剂易于积碳和烧结失活,这已成为制约其大规模工业化应用的瓶颈.迄今,大量文献报道关注如何提高Ni基催化剂的催化稳定性.而载体形貌调控是调节负载型催化剂的有效途径.本文开展了用作载Ni催化剂的氧化锆载体的形貌调控研究,以期可以有效调节载Ni催化剂的物化性质,进而调控载Ni催化剂的甲烷重整催化性能.采用水热法成功制备了松球状和鹅卵石状的单斜相氧化锆载体,进一步负载镍,制备了载镍催化剂,用于甲烷重整制合成气反应.具有分级结构的松球状氧化锆载Ni催化剂(Ni/ZrO2-ipch)展示出比鹅卵石状氧化锆和常规氧化锆纳米粒子载Ni催化剂显著好的催化活性和稳定性.采用XRD、N2吸附、TEM、H2-TPR、CO化学吸附、CO2-TPD、XPS和TGA等手段研究了松球状氧化锆载Ni催化剂高催化活性和稳定性的原因和机制.发现,其较高的催化活性主要归因于高的Ni分散度、改善的可还原性、促进的氧流动性以及较多的碱性位和较强的碱性,这些物化性质依赖于氧化锆载体的独特形貌.分级结构的松球状氧化锆载Ni催化剂高的甲烷重整催化稳定性主要源于催化剂的高抗烧结、抗积碳性能.加强的金属载体效应和介孔限域效应可以阻止金属Ni的高温烧结,而优良的抗积碳稳定性主要源于催化剂良好的氧流动性、较多的碱性位、较强的碱性以及小的Ni粒子尺寸.鉴于分级结构松球状氧化锆载Ni催化剂高的催化活性和优良的抗积碳、抗烧结稳定性,该催化剂用于甲烷重整制合成气具有广阔前景.而所制备的分级结构松球状氧化锆由于具有独特的结构和优良的热稳定性,可以作为性能优良的载体用于其他反应,尤其对于高温转化过程可望表现出明显优势.  相似文献   

6.
煤层气是储量十分丰富的煤炭伴生资源,也是煤炭开采中最大的安全隐患之一,同时还是重要的温室气体.研究煤层气的高效、清洁资源化利用具有资源和环境双重意义.因此,世界主要产煤国均十分重视煤层气的开发和利用.煤层气的主要成分是甲烷,目前主要通过两种方式实现其资源化利用:(1)直接转化,主要通过氧化偶联、催化氧化官能团化或脱氢芳构化等途径将其转化为高碳烃、含氧化合物及芳烃等;(2)间接转化,甲烷首先经催化重整反应制取合成气,而后再经Fischer-Tropsch合成、甲醇化和氢甲酰化等过程来合成饱和烃、烯烃、甲醇及其他含氧化物.对于前者,由于热力学限制,反应收率很低,应用前景较差,而经由合成气这一平台产物的间接转化路线被认为是一条甲烷资源化利用颇具工业前景的转化路线.因此,甲烷催化重整制合成气备受关注.研究表明,贵金属具有较好的甲烷重整催化性能,但其储量有限、价格昂贵的内在缺陷不利于甲烷大规模转化和资源化利用.Ni基催化剂具有与贵金属可比的催化活性和选择性,且其储量丰富,价格低廉,因此在甲烷重整反应中备受青睐.但是,相对于贵金属,Ni基催化剂易于积碳和烧结失活,这已成为制约其大规模工业化应用的瓶颈.迄今,大量文献报道关注如何提高Ni基催化剂的催化稳定性.而载体形貌调控是调节负载型催化剂的有效途径.本文开展了用作载Ni催化剂的氧化锆载体的形貌调控研究,以期可以有效调节载Ni催化剂的物化性质,进而调控载Ni催化剂的甲烷重整催化性能.采用水热法成功制备了松球状和鹅卵石状的单斜相氧化锆载体,进一步负载镍,制备了载镍催化剂,用于甲烷重整制合成气反应.具有分级结构的松球状氧化锆载Ni催化剂(Ni/ZrO_2-ipch)展示出比鹅卵石状氧化锆和常规氧化锆纳米粒子载Ni催化剂显著好的催化活性和稳定性.采用XRD、N_2吸附、TEM、H_2-TPR、CO化学吸附、CO_2-TPD、XPS和TGA等手段研究了松球状氧化锆载Ni催化剂高催化活性和稳定性的原因和机制.发现,其较高的催化活性主要归因于高的Ni分散度、改善的可还原性、促进的氧流动性以及较多的碱性位和较强的碱性,这些物化性质依赖于氧化锆载体的独特形貌.分级结构的松球状氧化锆载Ni催化剂高的甲烷重整催化稳定性主要源于催化剂的高抗烧结、抗积碳性能.加强的金属载体效应和介孔限域效应可以阻止金属Ni的高温烧结,而优良的抗积碳稳定性主要源于催化剂良好的氧流动性、较多的碱性位、较强的碱性以及小的Ni粒子尺寸.鉴于分级结构松球状氧化锆载Ni催化剂高的催化活性和优良的抗积碳、抗烧结稳定性,该催化剂用于甲烷重整制合成气具有广阔前景.而所制备的分级结构松球状氧化锆由于具有独特的结构和优良的热稳定性,可以作为性能优良的载体用于其他反应,尤其对于高温转化过程可望表现出明显优势.  相似文献   

7.
通过原位共沉淀的方法在γ-Al2O3表面上合成了Ni-Mg-Al-LDHs (水滑石), 合成的Ni-Mg-Al-LDHs/γ-Al2O3作为催化前驱体经过不同的热处理还原方式得到催化剂Cat-1、Cat-2和Cat-3. 用X射线衍射(XRD)、透射电镜(TEM)、N2吸附-脱附测试(BET)以及热重-差热分析(TG-DTA)对催化剂的形貌结构和抗积碳能力进行了表征测试; 通过甲烷二氧化碳重整反应体系对催化剂的反应活性和稳定性进行了评价. 结果表明催化剂前驱体的预处理方式对催化剂的反应性能具有较大的影响. Ni-Mg-Al-LDHs/γ-Al2O3 直接经过H2/Ar 常压高频冷等离子体炬的分解还原所获得的催化剂Cat-3 表现出了最佳的催化活性和稳定性. TEM表征表明催化活性组分在Cat-3上的分散性更好, 颗粒粒径更小. BET结果证明Cat-3具备较大的比表面积(195.8 m2·g-1). Ni-Mg-Al 水滑石的结构赋予了催化剂活性组分在载体γ-Al2O3上均匀的分散性, 同时常压高频冷等离体炬对催化剂的表面结构以及活性组分的还原具有进一步的优化作用, 两者的协同作用使Ni-Mg-Al-LDHs/γ-Al2O3在甲烷二氧化碳反应体系中具备优良的催化活性和抗积碳性能.  相似文献   

8.
我们研究了镍-铁双金属催化剂在乙酸水蒸气重整制氢反应中的催化性能.研究结果显示单金属铁催化剂对乙酸重整反应活性很低,但是对一氧化碳的中温变换反应有较好的催化性能.镍单金属催化剂对乙酸水蒸气重整制氢反应有非常好的初始催化活性,但是催化剂的长期稳定性很差.镍-铁复合催化剂的低温活性(623 K)和长期稳定性(100 h)都远好于单金属催化剂.这主要是因为铁的加入可以促进镍的分散,形成更多的表面活性位同时有助与防止镍的烧结.我们也对乙酸重整反应中的两个主要气体副产物(一氧化碳和甲烷)的反应路径进行了分析.研究发现反应温度决定一氧化碳和甲烷的反应路径.673 K是一个临界温度.低于此温度,甲烷的产生主要来自于一氧化碳和二氧化碳的甲烷化,而高于673 K,甲烷主要来自于乙酸的直接裂解.对于一氧化碳副产物而言,低于673 K其主要来自于乙酸的裂解或者不充分的水蒸气重整反应,而高于673 K产生的一氧化碳则主要来自与逆水煤气变换反应.  相似文献   

9.
采用共沉淀-浸渍法制备了不同Ni 含量的 Ni/Mg(Al)O 催化剂并用于液化石油气(LPG)的低温水蒸气重整反应. X 射线衍射和程序升温还原结果表明, 在 800 ℃焙烧的 Ni/Mg(Al)O 催化剂中, NiO 与 MgO 反应生成 Mg-Ni-O 固溶体, 还原后形成金属 Ni 纳米颗粒. 详细研究了 Ni 含量(质量分数)、反应温度和水/碳摩尔比(nH2O/nC) 等对催化剂性能的影响. 实验结果表明, 15%Ni/Mg(Al)O 催化剂对 LPG 低温重整反应具有最佳的催化性能. 提高反应温度能显著提高 Ni/Mg(Al)O 催化剂的催化性能. 当nH2O/nC=2时, 在400~500 ℃的温度范围使LPG完全转化的最大反应空速从 28900 mL·h-1·g-1Cat提高到 86800 mL·h-1·g-1Cat. 适当增大水/碳摩尔比有利于 LPG 转化为小分子气体, 但在 LPG 摩尔流量不变的情况下, 反应气中水含量过高会导致 LPG 转化率降低. 反应后催化剂的X射线衍射谱(XRD)和热重分析(TG)结果表明, Ni/Mg(Al)O催化剂优良的催化活性和反应稳定性可归因于催化剂表面Ni晶粒较高的稳定性和抗积炭性能.  相似文献   

10.
通过氢气原位程序升温还原法制备了一系列不同Ce/Ni摩尔比的CePO4-Ni3P及Ni3P催化剂, 考察了其在苯酚催化转移加氢反应的催化性能. 研究了Ce/Ni摩尔比、 供氢溶剂、 反应温度和反应时间对催化剂性能的影响, 并初步考察了苯酚转移加氢的反应动力学. 研究结果表明, CePO4的加入能显著提升体相Ni3P催化苯酚转移加氢的转化率, 且Ce/Ni摩尔比为0.2时促进作用最显著; 在所考察的供氢溶剂中异丙醇展现出最好的性能; 使用CePO4(0.2)-Ni3P作为反应催化剂, 异丙醇作为供氢溶剂, 220 ℃下反应6 h, 苯酚转化率和环己醇选择性分别可达93.1%和92.0%.  相似文献   

11.
 采用程序升温还原法对一系列具有相同W含量和不同Ni含量的硫化态NiW/Al2O3催化剂进行了表征,以考察催化剂中不同硫物种的数量及还原性能. 结果表明,含有助剂Ni的催化剂TPR谱在673~873 K出现了一个还原峰,归属为催化剂的NiWS混合相被分解生成的硫化镍物的还原. 随着助剂Ni含量的增加,与该还原峰相应的H2S生成量增大,表明形成了更多的NiWS活性相. 另外,Ni/(Ni+W)原子比为0.41的催化剂样品的噻吩加氢脱硫活性随着还原温度的升高而急剧下降,证实了催化剂在还原过程中活性相被逐步分解.  相似文献   

12.
《Comptes Rendus Chimie》2017,20(2):156-163
The influence of grain size on the catalytic activity of Ni-based solid-state catalysts in the thermocatalytic decomposition of methanol was investigated. The carbon deposit, obtained during the catalytic activity and stability tests, was analyzed in detail by scanning electron microscopy (SEM), Brunauer–Emmett–Teller analysis (BET), and X-ray diffraction (XRD). It was found that the Ni3Al catalyst with a bigger grain diameter exhibits higher catalytic activity and stability in a methanol decomposition reaction. The reason for the differences in the catalytic activity and stability of solid-state catalysts depending on the grain diameter of the catalyst was proposed. At the tops of the obtained nanotubes/nanofibres, one can see Ni nanoparticles in all investigated Ni3Al thin foils with every tested grain size.  相似文献   

13.
用比表面和孔体积测定、XRD和程序升温还原(TPR)方法研究了一系列不同制备条件对Ni在Al_2O_3表面上的分配形态及其对CO加氢反应催化性能的影响.实验发现,本文所用制备条件对催化剂的比表面、孔体积及孔径分布无显著的影响.浸渍时间愈长,催化剂上能在较低温度下还原的物种愈少,催化剂上CO的加氢活性愈低;在浸渍前对载体作室温抽空处理后制得的催化剂上,Ni在Al_2O_3表面是高度分散的,这一高度分散物种易于在低温下还原,使该催化剂具有很高的CO加氢活性和生成CH_4选择性;载体的抽空温度及对载体加热均对Ni物种形态及其分配、催化剂性能有明显影响.  相似文献   

14.
负载型金催化剂在CO氧化反应中具有良好的低温活性,受到了研究者的广泛关注,其催化性能与载体的性质密切相关.氧化铝具有廉价易得、比表面积大和热稳定性好等优点.然而,作为一种非还原性载体,氧化铝提供活性氧物种的能力差,与还原性载体相比催化剂的CO氧化活性较低.理论计算和实验结果表明,在金催化剂中引入过渡金属镍能够有效促进氧分子在催化剂表面的吸附和活化,从而提升金催化剂活性.此外,过渡金属的存在能够提高金的分散度,增加活性位数目,防止在高温预处理过程中金颗粒的烧结,从而提高催化剂的活性和稳定性.基于上述考虑,本文在氧化铝纳米片合成过程中原位引入硝酸镍,以实现对氧化铝载体的改性,然后负载金并应用于CO氧化反应.结果表明,当载体中的Ni/Al摩尔比为0.05,金负载量为1wt%时,采用还原性气氛对催化剂进行预处理可以得到具有CO氧化性能优良的金催化剂, 20 oC下CO转化率即可达100%.预处理气氛能够显著影响催化活性,采用还原性气氛预处理后催化剂活性明显优于氧化性气氛预处理.采用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、氢气程序升温还原(H2-TPR)、氧气程序升温脱附(O2-TPD)、CO吸附原位红外光谱(CO-DRIFT)和X射线光电子能谱(XPS)等表征手段进一步研究了镍掺杂对Au/Al2O3催化剂上CO氧化反应的促进作用机制.XRD测试未观察到明显的金或镍衍射峰,表明金或镍物种均为高分散.HRTEM结果进一步证实,引入镍物种后金颗粒的粒径由3.6 nm减小为2.4 nm,表明镍掺杂有助于提高金的分散度.而XPS结果显示,镍掺杂催化剂中金与镍存在电子转移,而镍仍以Ni O为主.H2-TPR结果表明,镍掺杂的催化剂前驱体中的金物种更容易被还原.O2-TPD结果证实,镍掺杂催化剂能够引入更多的氧空位,促进氧分子的吸附和活化,从而促进CO氧化反应的进行.CO-DRIFT结果表明,相比于氧化性气氛,采用还原性气氛预处理后金物种的电子云密度增加, CO吸附增强.而对于镍掺杂的催化剂,金物种吸附CO分子的能力进一步提高,有利于CO氧化反应的进行.综上,镍掺杂能够有效提高催化剂中金的分散度,增强催化剂对CO的吸附,促进氧气分子的吸附和活化,从而提高了催化剂的CO氧化活性.  相似文献   

15.
分别通过浸渍法和共沉淀法制备了不同Ni负载量的Ni/Al2O3催化剂。考察了Ni负载量、制备方法以及反应温度对Ni/Al2O3催化甲烷裂解性能的影响。结果表明,在550℃,浸渍法制备的Ni/Al2O3催化剂,当Ni负载量为20%(质量分数)、Ni金属平均粒径为11.25 nm时,具有最佳的甲烷催化裂解效果,其每摩尔Ni的氢气产量和每克Ni碳产量分别为164 mol和15.30 g。催化剂制备方法对Ni/Al2O3甲烷催化裂解反应有显著影响,相同Ni负载量共沉淀法制备的Ni/Al2O3甲烷催化裂解总体效果要好于浸渍法制备的Ni/Al2O3,而且反应过程中生成的碳纤维较长,管径也较均一。550℃时,共沉淀法制备的Ni负载量为41.2%(质量分数)的Ni/Al2O3催化剂在反应至350 min时,仍保持着30%以上的转化率。  相似文献   

16.
添加碱金属对甲烷与空气制合成气的催化剂性能的影响   总被引:3,自引:1,他引:3  
考察了添加在镍基催化剂中的碱金属助剂 ,对甲烷与空气制合成气的催化反应性能的影响 ;并用 TPO、TPR、CO2 程序升温脱附 (TPD)、XPS及 CO脉冲色谱技术 ,对催化剂进行了表征 .实验表明 ,碱金属助剂对降低催化剂结炭有一定的作用 ,催化剂的抗积炭性能为 Ni- K2 O/Ca O- Al2 O3>Ni- L i2 O/Ca O- Al2 O3>Ni- Na2 O/Ca O-Al2 O3>Ni/Ca O- Al2 O3.在实验中发现 ,碱金属的添加 ,可使催化剂的 Ni比表面积变小、吸附 CO2 的能力增强 ,且结合能可发生不同程度的改变 .从而解释了碱土金属助剂对催化剂活性和抗积炭性的影响 .实验显示 ,Ni-L i2 O/Ca O- Al2 O3具有较好的活性和抗积炭性能  相似文献   

17.
采用不同方法制备了一系列Ni/Al_2O_3催化剂,在无NH_3、无碱条件下对其己二腈催化加氢制1,6-己二胺的反应性能进行研究.通过XRD、 BET、 TEM、 XPS及程序升温实验等结果表明,采用沉淀剂有利于细小Ni纳米颗粒在催化剂介孔内的分散。然而较强的Ni与载体间相互作用不利于氢气的吸附活化,还原处理后催化剂中仍存在较高含量的氧化态Ni物种.采用浸渍法制备的Ni/Al_2O_3-I催化剂中颗粒的平均尺寸为18.5 nm, Ni颗粒暴露在载体表面,生成较高含量的还原态Ni0物种及有利于反应物吸附的中等强度酸性位点.该Ni/Al_2O_3-I催化剂表现出优良的低温活性,在60℃时,己二腈转化频率(TOF)可达39.7 h~(-1);80℃时转化率为100%, 1,6-己二胺收率可达73.0%.然而,由于Ni/Al_2O_3-I催化剂中Ni与Al_2O_3间相互作用较弱,经过3次循环性能测试,催化剂活性明显下降.进一步以少量Cu元素修饰低含量Ni/Al_2O_3-I催化剂, Cu助剂的引入有效改善了Ni纳米颗粒的分散性,并与部分Ni组分形成双金属纳米颗粒.Ni_(15)Cu_3/Al_2O_3催化剂经5次循环反应后无明显失活现象,催化剂的形貌及化学结构亦无明显变化, Cu的引入在保持Ni基催化剂低温活性的同时有效提升了催化剂的循环稳定性,催化剂的TOF为52.1 h~(-1).  相似文献   

18.
丙烷氧化脱氢M-Fe-O催化剂的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用微波加热草酸盐共沉淀法制备了一系列M-Fe-O(M=V、Cr、Mn、Co、Ni、Cu、Zn)催化剂,考察了其对丙烷氧化脱氢制丙烯反应的催化性能,并对催化剂进行了BET、XRD、H2-TPR、电导测量等表征.实验结果表明V-Fe-O和Cr-Fe-O催化剂表现出较好的丙烷氧化脱氢制丙烯催化性能.反应温度为873 K时,以V-Fe-O为催化剂时丙烷转化率34.46%,丙烯选择性30.91%;在Cr-Fe-O为催化剂上丙烷转化率36.31%,丙烯选择性34.22%.  相似文献   

19.
Methane decomposition using nickel, copper, and aluminum (Ni:Cu/Al) and nickel, copper, potassium, and aluminum (Ni:Cu:K/Al) modified nano catalysts has been investigated for carbon fibers, hydrogen and hydrocarbon production. X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectrometry (SSIMS), thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), secondary electron microscopy/X-ray energy dispersive (SEM-EDX), and temperature programmed desorption (TPD) were used to depict the chemistry of the catalytic results. These techniques revealed the changes in surface morphology and structure of Ni, Cu, Al, and K, and formation of bimetallic and trimetallic surface cationic sites with different cationic species, which resulted in the production of graphitic form of pure carbon on Ni:Cu/Al catalyst. The addition of K has a marked effect on the product selectivity and reactivity of the catalyst system. K addition restricts the formation of carbon on the surface and increases the production of hydrogen and C2, C3 hydrocarbons during the catalytic reaction whereas no hydrocarbons are produced on the sample without K. This study completely maps the modified surface structure and its relationship with the catalytic behavior of both systems. The process provides a flexible route for the production of carbon fibers and hydrogen on Ni:Cu/Al catalyst and hydrogen along with hydrocarbons on Ni:Cu:K/Al catalyst. The produced carbon fibers are imaged using a transmission electron microscope (TEM) for diameter size and wall structure determination. Hydrogen produced is COx free, which can be used directly in the fuel cell system. The effect of the addition of Cu and its transformation and interaction with Ni and K is responsible for the production of CO/CO2 free hydrogen, thus producing an environmental friendly clean energy.  相似文献   

20.
研究了在Mo/HZSM-5催化剂上添加助剂以及不同的反应预处理温度对甲烷无氧脱氢芳构化反应的影响。实验结果表明,由于第二组分的添加,Mo/HZSM-5催化剂的活性和选择性都得到了较大程度的改善。预处理温度是影响催化剂反应性能的关键因素。Mo-Ru/HZSM-5催化剂经过873K空气预处理后,甲烷在973K的转化率约为10%,催化剂的稳定性也得到较大程度的提高。TPSR实验结果表明,Ru的加入降低了芳烃生成的温度。TPO和DTA实验结果表明,在Mo-Ru/HZSM-5催化剂上可生成较多的碳物种,结合反应结果,可以认为反应过程中生成的碳物种对甲烷的无氧脱氢芳构化反应是起积极作用的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号