首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种基于微流控荧光定量聚合酶链式反应(Polymerase Chain Reaction,PCR)的血液病毒快速检测新技术。采用3D打印技术制作了一种集气动阀和"树型"结构为一体的微流控芯片;运用Comsol软件对芯片导热性能进行了仿真;根据血站血液核酸检测工作中乙型肝炎病毒(HBV)、丙型肝炎病毒(HCV)、人类免缺陷病毒(HIV)三种病毒的筛查流程,结合高温控性能的微流控荧光定量PCR分析系统,在所设计微流控芯片上开展了血液样本中HBV的检测研究。实验结果表明,该芯片具有良好的温度均匀性和导热性,芯片上可实现血液样本中HBV的快速检测,其Ct值在37左右呈弱阳性。该技术与目前血液筛查使用的大型核酸检测系统相比,具有操作过程简单、所占空间小、检测效率高且试剂消耗量少的优点,进一步优化实验条件可实现多病毒核酸的并行检测。  相似文献   

2.
采用具有紫外光聚合性能的聚乙二醇(PEG)基水凝胶材料, 通过紫外光聚合作用快速加工双层水凝胶微流控芯片, 并验证了其对肿瘤细胞代谢液进行检测的可行性. 与传统微流控芯片材料相比, 该水凝胶芯片材料具有更好的生物相容性及可操控性, 可直接加工成形, 在生物学领域特别是细胞培养过程控制方面具有良好的应用前景. 实验结果表明, 该水凝胶微流控芯片可在微尺度空间有效模拟细胞生长环境, 并实现对细胞连续捕获后的原位培养. 将该芯片与卟啉可视阵列传感器系统结合, 经代谢特征分析可有效区分不同种类肿瘤细胞, 实现芯片细胞培养平台上的细胞代谢指纹快速可视化传感检测.  相似文献   

3.
基于表面等离子体子共振成像(SPRi)技术提出了一种实时、 非标记的新型抗癌药物药效评估方法. 以聚二甲基硅氧烷(PDMS)为材料, 制作了包含微柱结构的微流控芯片作为流通反应池, 配合自行设计组装的SPRi生物传感器完成肿瘤细胞的特异性捕获及检测, 研究了苏拉明和顺铂对肝癌细胞HepG2的生长抑制作用. 同时引入辅助验证实验, 即采用常规八肽胆囊收缩素(简称CCK-8)法测定上述药物对肝癌细胞增殖的抑制作用. SPRi检测结果表明, 苏拉明和顺铂能抑制肿瘤细胞HepG2增殖并呈现剂量、 时间依赖关系.  相似文献   

4.
单细胞分析对于重大疾病的早期诊断及治疗、药物筛选和生理病理过程的研究具有重要意义。微流控芯片能够精确控制单细胞的微环境,实时监测单细胞的行为,已成为单细胞分析的强大工具。单细胞捕获是单细胞分析的重要步骤。目前已报道了多种微流控芯片用于单细胞捕获的方法,其中基于流体动力的微流控芯片单细胞捕获方法具有操作方便、单细胞捕获效率高等优点,受到研究人员的广泛关注及使用。为了全面了解基于流体动力的微流控芯片单细胞捕获方法的研究现状,掌握单细胞高效捕获的微流控芯片结构设计,实现单细胞精准快速分析,本文综述了基于流体动力的单细胞高效捕获(>70%)原理及微流控芯片结构,根据结构设计不同分为微井结构、微柱结构和旁路通道结构,介绍了单细胞高效捕获的微流控芯片优化过程,总结了微流控芯片的材质、结构特点及单细胞捕获效率等,对不同单细胞捕获结构的优势及不足进行了分析。最后,对基于流体动力的微流控芯片单细胞捕获方法的发展趋势进行了展望。  相似文献   

5.
基于表面等离子体子共振成像(SPRi)技术提出了一种实时、非标记的新型抗癌药物药效评估方法. 以聚二甲基硅氧烷(PDMS)为材料,制作了包含微柱结构的微流控芯片作为流通反应池,配合自行设计组装的SPRi生物传感器完成肿瘤细胞的特异性捕获及检测,研究了苏拉明和顺铂对肝癌细胞HepG2的生长抑制作用. 同时引入辅助验证实验,即采用常规八肽胆囊收缩素(简称CCK-8)法测定上述药物对肝癌细胞增殖的抑制作用. SPRi检测结果表明,苏拉明和顺铂能抑制肿瘤细胞HepG2增殖并呈现剂量、时间依赖关系.  相似文献   

6.
微流控芯片检测技术进展   总被引:1,自引:0,他引:1  
介绍了目前微流控芯片应用的3种主要检测手段:质谱检测器、电化学检测器和光学检测器。微流控芯片是微全分析系统(μ-TAS)中最活跃的领域和发展前沿。人们在微流控芯片的研究中已经取得了很大的进展,研制出了多种微型化、集成化的芯片,而与微流控芯片配套的高灵敏度微型检测系统更是研制的热点。  相似文献   

7.
微流控芯片又称芯片实验室,具有检测高效、消耗试剂少、高通量、微型化和集成化等特点,许多检测方式(如光学检测、电化学检测)已经集成于微流控芯片上,而荧光检测是微流控芯片检测技术的常见手段之一。为此,在介绍了荧光检测技术的基本原理和光路结构的基础上,从激发光源、光传辅助手段和检测器等方面综述了微流控芯片荧光检测系统的研究进展,并对其发展进行了展望(引用文献55篇)。  相似文献   

8.
基于微流控芯片试样引入技术的研究是目前微流控芯片分析领域内的重要研究方向之一,其目的是实现宏观外部系统(进行10^-6~1L级液体的操作)与芯片系统(进行10^-12~10^-9 L级液体的操作)的衔接(world-to-chip interfacing).目前文献报道的微流控分析系统,包括芯片流动注射系统,  相似文献   

9.
微流控芯片是一种将各种生化分析功能集中到一块厘米见方的芯片上.在微流控芯片上结合磁珠技术的优势一直都是研究的热点之一.然而,在只有几十到数百微米的微流体通道内对磁珠的进行控制一直都是比较困难的问题.常见方法有制作微型电磁铁~([1]),在芯片流体通道中制作镍柱,在外磁场作用下镍柱被磁化,其附近会产生一个较强的磁场梯度,从而对磁珠~([2])或细胞~([3])进行捕获,这些属于静态捕获.  相似文献   

10.
微流控芯片技术在生命科学研究中的应用   总被引:4,自引:0,他引:4  
微流控芯片最初起源于分析化学领域,是一种采用精细加工技术,在数平方厘米的基片,制作出微通道网络结构及其它功能单元,以实现集微量样品制备、进样、反应、分离及检测于一体的快速、高效、低耗的微型分析实验装置.随着微电子及微机械制作技术的不断进步,近年来微流控芯片技术发展迅猛,并开始在化学、生命科学及医学器件等领域发挥重要作用.本文首先简单介绍了微流控芯片制作材料和工艺,然后主要阐述了其在蛋白质分离、免疫分析、DNA分析和测序、细胞培养及检测等方面的应用进展.  相似文献   

11.
微流控芯片-拉曼光镊的红细胞光谱检测技术   总被引:2,自引:0,他引:2  
黄超  王强  姚辉璐  王桂文  黎永青 《分析化学》2007,35(10):1410-1414
将微流控芯片与带有光镊子的激光拉曼光谱系统结合起来用以检测人红细胞的拉曼光谱。根据实验效果,选用的芯片采用石英毛细管(内径70μm)与玻璃板耦合的方式制作而成,采用微流控技术使细胞依次通过光镊所在的区域,利用光镊将细胞囚禁,然后获取单个细胞的拉曼光谱,共测得正常人红细胞的12个拉曼光谱。将实验结果与使用常规方式检测得到的红细胞光谱进行比对分析,发现这一技术显著加快了细胞的拉曼光谱检测进程,并能增强数据的可靠性。  相似文献   

12.
3D打印微流控芯片技术研究进展   总被引:2,自引:0,他引:2  
近年来,微流控技术在生命科学和医学诊断等领域得到广泛的应用,显示出了其在检测速度、精度以及试剂损耗等方面相比传统方法的显著优势.然而,使用从半导体加工技术继承而来的微加工技术制作微流控芯片具有比较高的资金和技术门槛,在一定程度上阻碍了微流控技术的推广和应用.近年来随着3D打印技术的兴起,越来越多的研究者尝试使用3D打印技术加工微流控芯片.相比于传统的微加工技术,3D打印微流控芯片技术显示出了其设计加工快速、材料适应性广、成本低廉等优势.本文针对近年来国内外在3D打印微流控芯片领域的最新进展进行了综述,着重介绍了采用微立体光刻、熔融沉积成型以及喷墨打印等3D打印技术加工制作微流控芯片的方法,以及这些微流控芯片在分析化学、生命科学、医学诊断等领域的应用,并对3D打印微流控芯片技术未来的发展进行了展望.  相似文献   

13.
设计并制作了一种集多孔流分离(Multi-orifice flow fractionation,MOFF)技术与磁捕获技术于一体的用于特异性分离和捕获合成样本中肝癌细胞HepG2的多功能微流控细胞芯片.此芯片由玻璃基片和PDMS微通道盖片组成,PDMS盖片上含有3条进样通道、MOFF分离区和六边形腔体的细胞富集检测区.其中,MOFF分离区总长20 mm,由80组长度为0.18 mm、深度为50μm、收缩区域宽度为0.06 mm、扩张区域宽度为0.20 mm的半菱形收缩/扩张重复单元组成,每组收缩/扩张重复单元间的夹角为103.0°.实验以肝癌细胞HepG2-血细胞混悬液为样本;根据磁珠表面修饰c-Met抗体能与肝癌细胞HepG2特异性结合的原理,通过表面羧基化的磁珠、EDC(1 mg/mL)、NHS(1 mg/mL)和c-Met抗体制备了浓度为50μg/mL的免疫磁珠(Anti-MNCs)悬浮液.在样本流速为50μL/min条件下,利用外加磁场实现了血细胞合成样本中微量肝癌细胞HepG2的有效捕获;采用微波加热法以柠檬酸、硫脲为原料制备了用于荧光标记HepG2的碳量子点,在芯片上实现了血液中肝癌细胞HepG2的原位荧光可视化观测.对芯片检测区捕获到的HepG2进行了显微计数分析,对500μL血细胞(107 cell/mL)中含10个HepG2细胞的合成样本,捕获效率达到88.5%±6.7%(n=20).结果表明,所设计的多模式多功能的微流控芯片具有良好的肿瘤细胞分离和检测功能.  相似文献   

14.
玻璃微流控芯片廉价快速制作方法的研究   总被引:3,自引:0,他引:3  
研究了一种玻璃微流控芯片的快速、低成本制作工艺和方法. 该方法采用商品化的显微载玻片(soda-lime玻璃)作为芯片基质材料, 利用AZ 4620光刻胶代替传统工艺中的溅射金属层或多晶硅/氮化硅层作为玻璃刻蚀的掩膜层, 同时利用一种紫外光学胶键合方法代替传统熔融键合方法实现芯片的键合, 整个工艺对玻璃基质材料要求低, 普通微流控芯片(深度小于50 μm)制作流程仅需约3.5 h, 可降低制作成本, 缩短制作周期. 还系统地研究了光刻胶厚度、光刻胶硬烘时间和玻璃腐蚀液配比对玻璃微流控芯片制作的影响, 获得了优化的工艺参数.  相似文献   

15.
对微流控芯片检测技术的研究一直是近年来微全分析系统领域的研究热点.激光诱导荧光(Laser induced fluorescence,LIF)检测技术因其具有较高的灵敏度,成为目前微流控分析芯片采用最广的检测方法[1].  相似文献   

16.
付舰航  刘威 《分析试验室》2014,(11):1345-1348
研制了一种基于激光诱导荧光检测方法的微流控芯片分析仪。该分析仪使用玻璃基质聚二甲基硅氧烷(PDMS)微流控芯片,可一次性进行12通道的电泳分离实验。仪器采用共聚焦式光路结构,并可通过检测由微流控芯片反射的激光信息,控制步进电机实现芯片的自动精确定位。实验结束自动保存数据,绘制分离图谱。。对9种不同长度的50 bp DNA Ladder片段进行电泳分离及数据分析,耗时在5 min内,且分离效果良好。  相似文献   

17.
凝血时间检测主要用于凝血障碍性疾病的初步诊断、抗凝药物的监测以及外科手术前的评估,是医生对患者自身凝血功能进行评价的一项重要指标。本文应用微流控电阻抗技术,提出了一种基于叉指电极的微流体凝血时间检测方法。使用软刻蚀方式制作微流控芯片,将固化后带有微通道的聚二甲基硅氧烷(PDMS)与带有刻蚀电极的导电玻璃键合,搭建微流控电阻抗检测系统。本实验通过对血浆活化部分凝血活酶时间(APTT)的检测,得出血液凝固过程中阻抗值的变化曲线,引入微积分概念,确定血液凝固时间。  相似文献   

18.
毛细管电泳微流控芯片分离-激光诱导荧光(LIF)检测DNA片段是近年来微流控分析系统中研究得较为成功的领域,该方向的研究成果极大地促进了微流控分析系统的发展.在相关的报道中,待分析样品和系统运行溶液仍然主要使用手工操作.  相似文献   

19.
微流控细胞芯片LED诱导荧光检测微系统   总被引:1,自引:0,他引:1  
基于微流控细胞芯片分析技术和微机电系统(MEMS)加工技术, 设计制作了阵列式微流控细胞检测芯片, 采用自组装的顶窗型光电倍增管(PMT)和信号采集电路采集芯片微管道内流动细胞的荧光信号, 构建了一种针对低浓度细胞悬浮液的微流控细胞芯片发光二极管(LED)诱导荧光的快速检测微系统, 实现了对低浓度(≤40 Cell/mL)荧光标记的HepG2肝癌细胞悬浮液样本的定量计数和测试, 而且在血液细胞共存的条件下, 仍可以有效地对血液中少量HepG2肝癌细胞进行荧光计数和测试. 整个系统结构简单, 操作方便且检测灵敏度较高.  相似文献   

20.
建立了一种在微流控芯片上进行同工酶孵育及活性检测的方法. 该方法在集成温控装置的微流控芯片上实现对同工酶与辅酶反应进程的控制, 完成同工酶的进样、孵育反应、电泳分离和活性检测的实验步骤. 建立了基于微流控芯片的同工酶荧光检测系统, 使用360 nm光源激发辅酶产生荧光, 在460 nm处选择性采集荧光信号. 在微流控芯片上实现了同工酶样品的快速活性检测, 酶活性检测限达到0.5 U/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号