首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
方熠 《广州化学》2013,(4):31-35
通过原位电化学还原直接制备石墨烯修饰玻碳电极,并用电化学阻抗谱(EIS)和扫描电子显微镜(SEM)对其进行了表征,研究了亚硝酸根离子(NO2-)在石墨烯修饰玻碳电极上的电化学行为.结果表明:石墨烯修饰玻碳电极对NO2-的氧化反应有良好的电催化活性,NO2-的浓度与峰电流呈良好的线性关系,且在pH 7.0的磷酸盐缓冲液(PBS)中其氧化峰电流最高.利用该方法测定了模拟废水中NO2的含量,结果令人满意.  相似文献   

2.
制备了离子液体-氧化石墨烯修饰玻碳电极,用电化学阻抗谱对修饰电极进行了表征,研究了苏丹红Ⅰ在该修饰电极上的电化学响应特性.结果表明:在pH7.0的B-R缓冲液中,苏丹红Ⅰ在0.66V出现了一个氧化峰,是受表面控制的不可逆电化学过程.在4.5×10-8~8.0×10-7 mol·L-1浓度范围内,苏丹红Ⅰ的差分脉冲伏安响应电流与其浓度呈现良好的线性关系,相关系数R=0.992,检出限为2.5×10-8 mol·L-1.应用该修饰电极对番茄酱中的苏丹红Ⅰ进行检测,效果良好,样品回收率为96.4%~100.8%.  相似文献   

3.
以液体石蜡和硅油为混合粘合剂,与石墨粉混合制备了碳糊电极基底电极,将石墨烯/十二烷基硫酸钠复合物修饰在基底碳糊电极上,得到了基于石墨烯复合物的新型修饰碳糊电极。应用扫描电镜和循环伏安法分别研究了该电极的表面特性和电化学性质,结果表明,石墨烯和十二烷基硫酸钠修饰的碳糊电极增大了比表面积,有利于电子传递。在pH 3.0的HAc-NaAc缓冲溶液中,该修饰碳糊电极对氯霉素具有良好的电化学响应,氧化峰电位为0.194 V,氧化峰电流是基底碳糊电极的10倍。在最优实验条件下,该氧化峰电流与氯霉素的浓度在1.0×10~(-8)~5.0×10~(-4)mol/L范围内呈良好的线性关系,检出限为5.0×10~(-9)mol/L。该方法简便,重现性及选择性好,用于测定氯霉素滴眼液和虾中氯霉素残留,结果满意。  相似文献   

4.
《化学学报》2012,70(11)
石墨烯材料和酶的固定对石墨烯基生物传感器性能及应用至关重要.金电极依次放入氧化石墨(0.05 mg/mL)和氯金酸(0.05 mmol/L)溶液中进行控制电位电解,循环以上操作20次后,转移至2,5-二(2-噻吩)-1-对苯甲酸吡咯单体溶液采用循环伏安法进行电聚合形成含有羧基的导电高分子膜,然后以1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)/N-羟基琥珀酰亚胺(NHS)为活化剂将辣根过氧化物酶共价键合在修饰电极表面制备过氧化氢生物传感器.研究表明,交替电沉积得到的石墨烯/金纳米复合材料分散性好,所制备的生物传感器对过氧化氢的氧化还原过程有显著的催化作用.过氧化氢浓度在2~200 nmol/L之间传感器的电流响应与浓度呈线性关系,相关系数(R2)为0.9996,方法的检测限是0.67 nmol/L(S/N=3),灵敏度明显优于现有文献报道.此外,共价键合方式固定酶使传感器的稳定性和方法的重现性大大提高.5 nmol/L的过氧化氢溶液测定20次,相对标准偏差为1.2%.在4℃下储藏3个月传感器电化学响应变化值少于3%.该方法已成功应用于牛奶样品中痕量过氧化氢的测定.  相似文献   

5.
用一步电沉积法制备了纳米铜/石墨烯/壳聚糖复合膜修饰玻碳电极。用循环伏安法(CV)和差分脉冲伏安法(DPV)对邻苯二酚在该修饰电极的电化学行为进行了研究。实验结果表明,在pH值为7.0的磷酸盐缓冲液(PBS)中,该修饰电极对邻苯二酚具有良好的电催化作用,其电化学信号与邻苯二酚的浓度在1.0×10-6~2.0×10-4mol/L范围内呈良好的线性关系,线性相关系数为0.991。检出限为1×10-7mol/L。结果表明,纳米铜/石墨烯/壳聚糖复合膜修饰电极显著提高了邻苯二酚的电化学响应信号,并表现出良好的选择性和重现性。该方法成功用于水样中邻苯二酚含量的测定。  相似文献   

6.
制备了氧化石墨烯修饰玻碳电极,并运用循环伏安法对氧化石墨烯进行了直接的电化学还原,研究了L-色氨酸在该电化学还原的氧化石墨烯修饰玻碳电极上的电化学行为。结果表明,L-色氨酸在该修饰电极上其氧化峰电流与裸玻碳电极相比增大了7.1倍,且峰电位负移80mV。利用差分脉冲伏安法,在pH=6.5的磷酸盐缓冲溶液中测定L-色氨酸,氧化峰电流与其浓度在0.4~65.0μmol/L范围内呈良好的线性关系,相关系数为0.998,方法检出限为0.2μmol/L。  相似文献   

7.
马心英  吴义芳  李霞 《应用化学》2012,29(7):824-829
利用滴涂的方法制备了石墨烯修饰电极;石墨烯修饰电极对对乙酰氨基酚(ACOP)的电化学氧化具有明显的催化作用。 研究了ACOP在石墨烯修饰电极上的电化学行为,建立了测定ACOP的电化学分析新方法。 考察了磷酸盐缓冲溶液的pH值对ACOP电化学行为的影响。 结果表明,氧化还原峰电位随pH值升高发生负移;在pH=6.0磷酸盐缓冲溶液中,对乙酰氨基酚在修饰电极上呈现一对灵敏的氧化还原峰。 对乙酰氨基酚在石墨烯修饰电极上的氧化峰峰电流与其浓度在6.00×10-7~4.00×10-5 mol/L范围内呈良好的线性关系,相关系数为0.994 0;检出限为5.00×10-8 mol/L。 其回归方程为:ipa(A)=3.00c+1.21×10-5。 该修饰电极具有良好的灵敏度、选择性和稳定性,可用于对乙酰氨基酚药片分析。  相似文献   

8.
利用Nafion(全氟聚苯乙烯磺酸溶液)-氧化石墨烯复合物、硫堇和纳米金构建了H2O2酶传感器。首先将氧化石墨烯分散在体积分数0.2%Nafion溶液中制得Nafion-氧化石墨烯的复合物,并将其固定在玻碳电极表面,通过静电吸附将带正电荷的硫堇吸附到Nafion-氧化石墨烯复合膜修饰的玻碳电极表面,再利用静电吸附将纳米金修饰于电极上,通过纳米金来固定辣根过氧化物酶从而制得H2O2传感器。用循环伏安法和计时电流法考察该修饰电极的电化学特性。H2O2浓度为5.5×10-6~1.0×10-3mol/L时,酶电极的响应电流值与H2O2的浓度呈良好的线性关系,检出限为1.80×10-6mol/L。  相似文献   

9.
制备了石墨烯修饰玻碳电极,研究了酪氨酸在修饰电极上的电化学行为.优化了包括支持电解质、溶液pH、修饰剂用量、富集电位及时间等测定条件.在0.1 mol·L-1pH 7.0的磷酸盐缓冲溶液中,峰电流与酪氨酸的浓度在3×10-6~1.2×10-4mol·L-1的范围内呈良好的线性关系,检出限为2 × 10-7 mol·L-...  相似文献   

10.
石墨烯修饰玻碳电极测定邻苯二酚   总被引:2,自引:0,他引:2  
罗启枚  王辉宪  刘登友  王玲 《应用化学》2012,29(9):1070-1074
制备了用于测定邻苯二酚(CAT)的石墨烯修饰电极,并应用循环伏安法研究了CAT在该修饰电极上的电化学行为;用差分脉冲伏安法研究了测试底液的pH值对该修饰电极性能的影响,结果表明,此修饰电极在含不同浓度CAT的PBS溶液(pH=7.0)中测定,响应电流与CAT浓度在5.0×10-8~5.6×10-4mol/L范围内有良好的线性关系,相关系数r=0.9919,检出限为6.68×10-9mol/L(S/N=3)。与其它几种修饰电极相比,石墨烯修饰电极制备简单、响应时间快、操作简便,稳定性和重现性良好,有应用价值。  相似文献   

11.
合成了氮掺杂石墨烯量子点,并基于茜素红-氮掺杂石墨烯量子点之间的相互作用形成氢键复合物,茜素红可以对所合成的氮掺杂石墨烯量子点产生明显的荧光猝灭作用(荧光关),氮掺杂石墨烯量子点荧光强度的变化(F0/F)与茜素红浓度(2.78~23.59 nmol/L)具有良好的线性关系,检出限为1.24 nmol/L;继续向该溶液中加入牛血清白蛋白,会使原已发生荧光猝灭的氮掺杂石墨烯量子点溶液的荧光发射强度得以恢复(荧光开),且荧光发射强度的恢复与牛血清白蛋白浓度(0.1~0.375 g/L)之间具有良好的线性关系,检出限为0.011 g/L。此外,该"关-开"荧光检测体系被用来定量分析人尿液中的牛血清白蛋白含量,方法已用于实际尿液样品的定量分析。  相似文献   

12.
李坤威  刘晶冰  郝欢欢  汪浩 《化学通报》2017,80(3):236-240,245
石墨烯独特的二元化电子价键结构使其在纳米电子器件中具有良好的应用发展前景。拉曼光谱作为一种灵敏、便捷的技术,已被成功地用作表征石墨烯的结构和特性。本综述着重对沉积在不同基底以及掺杂的石墨烯拉曼光谱研究做了一个简单的总结。通过对铟锡氧化物、蓝宝石和玻璃基底上的石墨烯拉曼光谱进行观察,发现在不同基底上的石墨烯拉曼G峰与2D峰峰值会有不同程度的偏移,但2D峰峰值可判断石墨烯层数这一结论仍适用。掺杂可改变石墨烯的荷电状态,使石墨烯表现出空穴(p)型或电子(n)型掺杂特性,通过石墨烯拉曼光谱的变化可以定性石墨烯的掺杂类别并定量表征石墨烯的载流子浓度。  相似文献   

13.
制备了TiO2-石墨烯修饰玻碳电极。用循环伏安法(CV)和差分脉冲伏安法(DPV)对间苯二酚在该修饰电极的电化学行为进行了研究。实验结果表明,在pH值为6.0的磷酸盐缓冲液(PBS)中,该修饰电极对间苯二酚具有良好的电催化作用。对TiO2-石墨烯用量、支持电解质、pH和扫描速度等实验条件进行了优化。在优化条件下,利用DPV测定,间苯二酚的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol/L范围内呈良好的线性关系,线性相关系数为0.995。检出限为2×10-7mol/L。将该方法应用于模拟水样中间苯二酚的测定,回收率为96.5~104.2%。  相似文献   

14.
采用高温热退火方法制备了氮掺杂的石墨烯,并制备了氮掺杂石墨烯修饰玻碳电极(NG/GCE),研究其对鸟嘌呤的电催化氧化作用.实验考察了溶液pH值、扫速、鸟嘌呤浓度的影响.结果表明,鸟嘌呤在NG/GCE上的氧化是不可逆过程,修饰电极可以增强鸟嘌呤在电极表面的吸附,对鸟嘌呤具有很好的电催化氧化性能,降低了鸟嘌呤氧化电位.在pH=7.0的磷酸盐缓冲溶液中检测鸟嘌呤,其氧化峰电流在5.0×10-6~1.0×10-4 mol/L浓度范围内呈良好的线性关系,检出限(3σ)为1.0×10-6 mol/L.  相似文献   

15.
采用循环伏安法和差分脉冲伏安法研究了沙丁胺醇在石墨烯/聚硫堇修饰玻碳电极上的电化学行为,该电化学传感器对沙丁胺醇显示出良好的电化学响应。在pH 7.0,扫描范围为-0.6~0.4 V,扫速为80 mV/s条件下,沙丁胺醇的氧化峰电流与其浓度在3.1×10-7~8.5×10-5mol/L范围内呈良好线性关系,检出限达9.6×10-8mol/L。结果显示石墨烯/聚硫堇修饰玻碳电极具有良好的重现性和稳定性。  相似文献   

16.
制备了石墨烯薄膜修饰玻碳电极,并通过循环伏安法研究了对硫磷(PT)在该修饰电极上的电化学行为。对支持电解质、溶液pH值等实验条件进行了优化。结果表明,在0.1mol/L的乙酸-乙酸钠缓冲溶液(pH=5.0)中,PT在石墨烯薄膜修饰电极上具有良好的电化学响应,对比裸玻碳电极,PT的氧化峰峰电流显著提高,表明修饰膜对PT的电化学氧化具有一定的催化作用。PT的氧化峰电流及其浓度分别在1.0×10-7~1.0×10-6 mol/L范围内和3.0×10-6~1.0×10-5 mol/L范围内呈良好的线性关系,线性相关系数分别是0.9956和0.9874,检出限为1.0×10-8 mol/L。将该修饰电极应用于小白菜中残留PT的测量,结果比较满意。  相似文献   

17.
采用化学合成法制备了铁氰化镍纳米颗粒,并将其与热还原石墨烯机械混合从而合成了铁氰化镍-石墨烯复合材料。在扫描电镜和透射电镜上对合成的复合材料进行形貌结构表征。利用循环伏安和计时电流测试技术对石墨烯复合物的电化学性能进行了探讨。复合物修饰电极对多巴胺具有优异的电催化活性。在较宽的浓度区间,多巴胺的响应电流与多巴胺浓度呈较好的线性关系。该电极材料有望用作多巴胺等药物小分子的灵敏检测。  相似文献   

18.
聚对氨基苯磺酸/石墨烯修饰玻碳电极伏安法测定痕量汞   总被引:1,自引:1,他引:0  
制备了对氨基苯磺酸/石墨烯复合膜修饰电极,研究了汞在修饰电极上的电化学行为。 在0.1 mol/L、pH=4.0的磷酸盐缓冲液中,以此修饰电极为工作电极,在-1.2 V搅拌富集5 min,用差分脉冲伏安法测定0.31 V处的溶出峰电流。 结果表明,该电极显著提高了汞离子的电化学响应信号。 在优化条件下,峰电流与Hg2+的浓度在1.0×10-6~5.0×10-4 mol/L范围内呈良好的线性关系,相关系数为0.995。 方法的检出限为5.0×10-7 mol/L。 将该法用于水样中痕量汞的测定,回收率为92.2%~105.2%。  相似文献   

19.
苗新蕊  张旭红  谢英 《电化学》2007,13(2):203-206
研究血红蛋白在月桂酸修饰电极上的电化学行为,在0.02mol.L-1KH2PO4-Na2HPO4(pH=7)的缓冲液中,+0.6~-0.7V(vs.Ag/AgCl)电位范围内,Hb于该修饰电极产生不可逆还原电流峰.还原峰电流ip与v1/2呈线性关系,ip随溶液pH值和血红蛋白浓度的增加而增大,其浓度在1.00×10-8~5.00×10-9mol.L-1和1.92×10-6~2.06×10-7mol.L-1范围内分段呈线性变化关系.实验数据经进一步分析拟合,得到更精确的信息.该电极可作为检测血红蛋白的新型电化学生物传感器.  相似文献   

20.
采用电化学还原方法制备了铁氰化镍-石墨烯复合薄膜电极,扫描电子显微镜(SEM)表征电还原石墨烯和铁氰化镍-石墨烯复合材料的表面形貌。采用循环伏安和计时电流技术研究了该修饰电极对抗坏血酸(AA)的电催化氧化性能,据此建立了一种测定AA的电化学分析新方法。由于石墨烯和铁氰化镍纳米颗粒之间的协同效应,使得该复合修饰电极对抗坏血酸具有优异的电催化活性。在0.1 mol/L pH 7.00的PBS溶液中,抗坏血酸的催化氧化电流与其浓度在1.0×10-4~7.0×10-4mol/L范围内呈良好的线性关系,检出限为3.1×10-5mol/L(S/N)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号