首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为了改善富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2的循环性能,采用燃烧法合成了正极材料Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06).通过X射线衍射(XRD)和扫描电镜(SEM)对其结构与形貌进行了表征,利用恒电流充放电测试,循环伏安(CV)及电化学交流阻抗谱(EIS)技术对其电化学性能进行测试.结果表明,Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06)正极材料均具有α-NaFeO2型层状结构;在室温,2.0-4.8 V电压范围,以0.1C和1.0C(充放电电流以1.0C=180 mA·g-1计算)倍率充放电进行测试,样品Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2的首次放电比容量分别为280.3和206.4 mAh·g-1.其中,在1.0C倍率下,100次循环后容量保持率由原来的73.2%提高到88.9%;以5.0C倍率充放电进行测试,经50次循环后,掺杂正极材料的放电比容量为76.5 mAh·g-1,而未掺杂材料仅有15.0 mAh·g-1.在50、25和-10°C,2.0C倍率条件下,掺杂正极材料的电化学性能均得到有效改善,其中,在-10°C经过50次循环后正极材料Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2比未掺杂的正极材料相比,其放电比容量提高了61.1%.  相似文献   

2.
采用流变相法合成了锡掺杂的非整比锂钛氧尖晶石化合物,并研究了不同比例的Sn髧离子掺杂对锂钛氧尖晶石结构及性能的影响。采用XRD、SEM技术对合成材料的晶体结构和微观形貌进行表征,采用恒流充、放电系统及交流阻抗测试法对合成材料的电化学性能进行了测试,结果表明:Sn髧离子掺杂在一定程度上改善了锂钛氧尖晶石作为负极材料时,不同的掺杂量,对材料的电化学性能影响不同,其中Li4-xTi5Sn0·3O12材料的性能为最佳,当电池在较低电流密度下(50 mA·g-1)充、放电时,Li4-xTi5Sn0·3O12材料的首次放电比容量为236 mAh·g-1,在随后提高充、放电倍率过程中(由1C增到4C进行充、放电),当循环105次后,Li4-xTi5Sn0·3O12材料的放电比容量仍保持在109.8 mAh·g-1,与纯样品或其它非整比掺杂样品锂钛氧尖晶石比较,Li4-xTi5Sn0·3O12表现优良的电化学循环性能。本文还对锡掺杂导致锂钛尖晶石材料性能改善的原因也进行了初步探索。  相似文献   

3.
液相法合成锂离子电池正极材料Li_(1+x)Mn_2O_4   总被引:11,自引:0,他引:11  
采用柠檬酸络合和溶液浸渍两种方法制备Li1+xMn2 O4正极材料 ,用XRD和BET测试了材料晶体结构和比表面积 ,考察焙烧温度、Li/Mn比、起始原料对产物结构和电化学性能的影响 ,结果表明 ,焙烧温度与Li/Mn比是影响材料电化学性能的关键因素 ,确定了制备Li1+xMn2 O4材料最佳条件为 0≤x≤ 0 .0 5 ,焙烧温度 75 0°C ,所得电池材料首次充放电容量达到 1 2 0mAh/g .循环 5 0次后 ,其充放电容量为 1 1 5mAh/g .  相似文献   

4.
层状LiNi0.5Mn0.5O2正极材料的优化合成及电化学性能   总被引:1,自引:0,他引:1  
闻雷  其鲁  徐国祥 《化学通报》2006,69(4):267-271
采用沉淀法首先得到了Ni0.5Mn0.5(OH)2沉淀物,以其为原料与LiOH反应制备了LiNi0.5Mn0.5O2正极材料。采用XRD、SEM、充放电测试等研究了其结构与电化学性能,同时研究了Li过量时对材料电化学性能和结构的影响。SEM分析表明,Ni0.5Mn0.5(OH)2与LiNi0.5Mn0.5O2产物均为微小晶粒团聚成的颗粒。LiNi0.5Mn0.5O2材料在2.5~4.4V电位区间内,首次放电容量为130mAh/g,0.2C倍率下,50次循环后的容量保持率为87.8%。锂过量有助于形成良好的层状结构材料,并能显著提高材料的比容量和循环性能,Li1.1Ni0.5Mn0.5O2的首次放电容量为149mAh/g,0.2C倍率下,50次循环后的容量保持率为92.6%。  相似文献   

5.
将通过共沉淀法制备的M(OH)2(M=Mn,Ni)前驱体与Zn O和Li2CO3混合,合成了不同Zn2+掺杂量的Li1.13Ni0.3-xMn0.57ZnxO2材料.X射线衍射结果表明,Zn2+掺杂提升了材料的层状属性,降低了Li+/Ni2+混排程度.在2.0~4.8 V电压范围内,Zn2+掺杂材料表现出更高的可逆比容量,并具有良好的倍率性能和循环稳定性.示差扫描量热测试结果显示,Zn2+掺杂材料的热安全性能明显优于未掺杂材料.在所合成的材料中,Li1.13Ni0.29Mn0.57Zn0.01O2(Zn2+掺杂量x=0.01)具有最高的放电容量、最好的倍率性能和循环稳定性及极佳的热安全性能.  相似文献   

6.
以化学法合成Li(Ni1/3Co1/3Mn1/3)1-xAlxO2系列正极材料(0≤x≤0.1);用X射线衍射仪、扫描电子显微镜和充放电仪研究系列产物的晶体微观结构、表面形貌以及电化学性能,研究不同Al含量参杂对材料性能的影响。结果表明,合成的材料均属于六方晶系,R3m空间群,保持α-NaFeO2层状结构相;Li(Ni1/3Co1/3Mn1/3)0.95Al0.05O2的首次放电容量166.30 mA·h/g,在2.5~4.5 V区间60次循环后比容量衰竭率为4.43%。通过对比Li(Ni1/3Co1/3Mn1/3)0.95Al0.05O2和Li(Ni1/3Co1/3Mn1/3)O2的电极阻抗,分析它们的电化学循环机理,可知掺杂Al后的正极材料适合大倍率放电。  相似文献   

7.
利用喷雾干燥法合成了富锂三元正极材料Li1.2Mn0.4+xNixCr0.4-2xO2(x=0,0.05,0.10,0.15,0.20,以下简称为SD1~SD5),并利用XRD,XPS,ICP,TEM,SEM等手段对材料进行结构,元素价态,形貌及电化学性能等方面的表征。SD1~SD5系列样品都具有层状结构,其所含的Cr元素为Cr6+和Cr3+共存,而Ni元素价态为+2.5价,Mn元素为+4价。SD1~SD4样品中由于存在非晶态的Li2CrO4,导致样品表现出强烈的吸湿性。这个问题可通过水洗处理来解决,且水洗处理对于改善该系列材料的电化学性能有明显的效果。SD1~SD5系列样品中,SD1与SD4样品电化学性能较好,以20 mA.g-1的放电电流密度,在4.8~2.0 V电压区间内,首次放电比容量分别为247和220 mA.h.g-1,经过20次充放电循环后,容量保持率分别为73%和78%。高温条件下SD1和SD4样品的首次放电比容量分别增大为256和237 mA.h.g-1,经过20次充放电循环后容量保持率分别为83%和99%。将充放电电压扩展为5.0~2.0 V时,SD4样品首次放电比容量可以达到307 mA.h.g-1。  相似文献   

8.
采用溶胶-凝胶法在0≤x≤0.5的范围内合成了LiCo0.3-xGaxNi0.7O2的单相.对样品进行了XRD、粒度、比表面积和充放电循环测试.随着掺Ga量的增加,LiCo0.3-xGaxNi0.7O2的放电容量增加.其中LiCo0.25Ga0.05Ni0.7O2在2.8~4.3V和0.2C时的首次放电容量为177.5mA·h/g,经25次充放电循环后无容量衰减.LiCo0.25Ga0.05Ni0.7O2的放电容量随着放电倍率的增大而减小,随着充放电域压上限的增加而增大.但是材料的放电容量在高放电倍率下放电后仍可以完全恢复,且其循环性能与放电域压上限无关.此外,LiCo0.25Ga0.05Ni0.7O2在充放电循环中结构稳定,无相变发生.  相似文献   

9.
锂钛复合氧化物锂离子电池负极材料的研究   总被引:17,自引:0,他引:17  
杨晓燕  华寿南  张树永 《电化学》2000,6(3):350-356
采用 3种化学方法合成锂钛复合氧化物 .应用X -射线衍射分析对其结构进行表征以及电化学性能测试 ,结果表明 :由Li2 CO3、TiO2 高温合成的锂钛复合氧化物为尖晶石结构的Li4Ti5 O12 .Li4Ti5 O12 电极在 1 .5V左右有一放电平台 ,充放电可逆性良好 ,即充电电压平台与此接近 ,且电极的比容量较大 ,循环性能良好 .以 0 .30mA·cm- 2 充放电时 ,首次放电容量可达 30 0mAh·g- 1,可逆比容量为 1 0 0mAh·g- 1,经多次充放电循环后 ,其结构仍保持稳定性 .试验电池测试表明 ,Li4Ti5 O12 可选作Li4Ti5 O12 /LiCoO2 锂离子电池的负极材料 .  相似文献   

10.
《电化学》2015,(5)
采用碳酸盐共沉淀法合成出前驱体,然后通过高温固相法制备了富锂锰基材料0.6Li[Li1/3Mn2/3]O2·0.4Li NixMnyCo1-x-yO2(x0.6,y0).使用扫描电镜(SEM)、X射线衍射(XRD)以及电化学方法等手段进行了表征.高温原位XRD测试结果表明,随着温度和Ni含量增加,材料的晶胞参数发生较大变化,温度达800 o C时,高Ni组成的材料阳离子混排现象严重,并伴有尖晶石相生成.电性能测试结果表明,在充放电电压为2.0~4.6 V、电流密度20m A·g-1条件下,低Ni含量材料表现出较好的电化学性能,首周放电容量达260.1 m Ah·g-1,首次效率为83.2%,经过50次循环后放电容量保持率高达99.7%,且在电池循环过程中,放电电压平台下降较少.  相似文献   

11.
王茹英  邱天  毛冲  杨文胜 《电化学》2012,(4):332-336
在恒定pH值下将层状钴铝双羟基复合金属氧化物(CoAl-LDH)均匀包覆在球状Ni(OH)2表面,与LiOH.H2O混合均匀后,经高温煅烧制得钴铝酸锂包覆镍酸锂0.08LiCo0.75Al0.25O2-0.92LiNiO2正极材料.电化学测试表明,0.08LiCo0.75Al0.25O2-0.92LiNiO2正极比容量高,具有良好的倍率性能和循环寿命,其0.1C放电比容量为211 mAh·g-1,0.5C放电比容量为195.6 mAh·g-1,3C放电比容量为161 mAh·g-1,0.5C 30周期循环后容量保持率为93.2%,明显优于LiNiO2和钴酸锂包覆镍酸锂0.08LiCoO2-0.92LiNiO2正极.  相似文献   

12.
It is a technological problem of LiNiO2 cathode material for lithium-ion secondary batteries because of the difficult preparation and hard purification, instable performance, remarkable capacity fading at initial discharge, worse thermal stability and safety of Ni-series cathode materials,and it is also the key factor of hindering LiNiO2 cathode material from practical applications.Recently, by doping some metal cations such as Co, Mn, Mg, Al, Cr and so on[1-5] into LiNiO2, the preparation difficulty and the purification hardness can be obviously improved, and the initial irreversible discharge capacity can be reduced, and the ratio of the initial discharge to charge capacity can be enhanced. But the cyclic stability, thermal stability and safety of LiNiO2 are not enough to satisfy the demand of commercial use.At present, the synthesis of LiNiO2 cathode material must be sintered under oxygen atmosphere in most cases, and the improved effect of fluoride doping on the electrochemical properties of LiNiO2 has seldom been reported in the literatures.In this paper, the cobalt cation and fluorine anion co-doping cathode materials Li1+δNi1-xCoxO2-yFy( 0≤δ≤0.2, 0≤x≤0.5, 0≤y≤0.1 ) were synthesized by solid state reaction method at 650℃ ~750℃ under air atmosphere, and characterized by XRD、 SEM、 TEM、 BET、 laser particle-size distribution measurement and electrochemical performance testing, the effect of different nickel sources on the properties of as-synthesized cathode materials was investigated. The results demonstrated that the cobalt and fluorine ions co-doping cathode materials Li1+δNi1-xCoxO2-yFy have complete layered structure, uniform surface morphology and better particle-size distribution as well as excellent electrochemical performances. At 20~25℃, 0.15~0.25mA charge and discharge current,4.25~2.70V cut-off voltage, 0.2~0.5C charge and discharge rate and 0.2~0.5 mA/cm2 current density,LiNi0.8Co0.2O1.95F0.05 cathode material has higher initial charge and discharge capacity and better cyclic properties which can be mainly attributed to the doping of the higher electronegativity fluorine which improves the structural stability and the synergistic reaction of cobalt and fluorine ions co-doping on the cathode materials. Under the above conditions, the initial charge and discharge capacity of LiNi0.8Co0.2O1.95F0.05 is 165.70mAh/g and 146.10mAh/g, respectively. After 50 cycles, it has more than 140mAh/g of discharge capacity and displays preliminary application possibility in the future.  相似文献   

13.
The cathode-active materials LiMn2O4, LiAl0.1Mn1.9O4, and LiAl0.1Mn1.9O3.9F0.1 were synthesized by a microwave-assisted sol-gel method. The influence of different doping elements on the structural and electrochemical properties of the as-prepared samples was investigated by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrochemical experiments. The results indicated that fluorine plays an important role in controlling the morphology, and the doped aluminum could enhance significantly the stability of spinel-type LiMn2O4. The initial discharge capacity of the Al3+ and F- co-substituted specimen reached 129.8 mA h/g and has a high capacity retention after 40 cycles. The outstanding electrochemical properties of LiAl0.1Mn1.9O3.9F0.1 make it a possible promising cathode material for lithium-ion batteries.  相似文献   

14.
新型锂离子电池正极材料Li0.86V0.8O2的水热合成及性质   总被引:1,自引:1,他引:0  
采用两步反应制备了新型锂离子电池正极材料Li0.86V0.8O2. 该材料具有六方层状结构, 空间群为R3m. 研究了在水热条件下溶液的碱度对于钒酸锂盐形成的影响, 在低碱度的条件下, 前驱体V2O3和LiOH·H2O并未发生反应, 只有在碱度达到2.5 mol/L时, 才能形成单相的Li0.86V0.8O2材料. X射线光电子能谱分析发现, V2p的结合能位于516.4 和523.1 eV, 分别对应于四价钒离子的V2p3/2 和V2p1/2, 这说明在Li0.86V0.8O2中V离子主要价位为+4价. 在电流密度为7.4 mA/g的充放电中, Li0.86V0.8O2初始充电容量达到163 mA·h/g, 首次放电容量也能达到113 mA·h/g, 20次循环后放电容量仍然可以达到80 mA·h/g, 表现出较好的循环性能.  相似文献   

15.
采用基于密度泛函理论(DFT)的平面波赝势(PW-PP)方法, 计算了LiAlH4分解反应中各个产物的晶胞参数、电子结构、生成焓和分解反应的反应焓. 反应中各固态、气态物质的晶胞的结构优化后的晶格参数与相应的实验值均符合得较好. 对LiAlH4与Li3AlH6的电子结构分析均表明, 其中的Al—H键为共价键、Li—H键为离子键. 对各分解反应的反应焓计算结果表明, (1) LiAlH4→1/3Li3AlH6+2/3Al+H2,(2) 1/3Li3AlH6→LiH+1/3Al+1/2H2及(3) LiH+Al→LiAl+1/2H2均为吸热反应, 298 K时计算的反应焓分别为14.3、14.9 与50.9 kJ·mol-1, 与相应的实验值符合得较好.  相似文献   

16.
纳米钴基氧化物锂离子电池负极材料的研究   总被引:10,自引:0,他引:10  
黄峰  袁正勇  周运鸿  孙聚堂 《电化学》2002,8(4):397-403
采用流变相法合成Co3 O4 ,CoB1.3 6 O2 .8,CoB0 .5Al0 .1O1.5样品 ,并研究其作为锂离子电池负极材料的电化学性能 .当电池在 0 .0 1~ 3.0 0V的电压范围之间循环时 ,Li/Co3 O4 电池表现出最好的充放电性能 :循环 30周后 ,可逆比容量仍能保持为初始比容量 (931mAh/g)的 95 % .掺杂了B ,Al材料 ,其可逆比容量与未掺杂的相比明显降低 ,而且第 1周可逆容量随掺杂的B、Al量的增加而减少 .通过异位XRD方法研究了不同充放电态Co3 O4 电极材料结构的变化 .结果表明 ,Co3 O4 电极在充放电过程中与Li的反应机理不同于传统的过渡金属与Li的反应机理 ,即非Li+ 的嵌入 /脱出或合金的形成 ,而是Co3 O4 的可逆还原氧化以及Li2 O的可逆形成与分解机理  相似文献   

17.
研究了一些锂基氧化物对异丁烷的催化氧化脱氢作用,其中Li2SnO3显示出优良的催化性质,Li2MnO3,LiFe5O8和LiAl5O8对异丁烯的选择性较差,而Li2CeO3,LiFeO2和LiZnO2在反应条件下不稳定。系列LiSnO催化剂的CO2TPD分析表明,当SnO2转化为Li2SnO3时,在表面形成了碱中心,它有利于异丁烯从催化剂表面脱附。O2TPD和H2TPD结果表明,此时吸附的氧物种数量降低,异丁烯的深度氧化受到抑制。Li2SnO3中晶格氧物种的活性对异丁烷催化氧化脱氢可能是适宜的,但不利于深度氧化。  相似文献   

18.
低共熔混合锂盐相图的绘制及应用   总被引:3,自引:0,他引:3  
采用热分析法对不同组成的混合锂盐二元体系进行研究, 绘制了混合锂盐体系的步冷曲线和T-x相图, 结果表明体系均为具有最低共熔点的二元体系. LiOH-LiNO3、LiOH-LiCl、LiOH-Li2CO3及LiNO3-LiCl体系的最低共熔点分别为175.7、294.5、418.2及221.6 ℃. 利用低共熔混合物LiNO3-LiOH为锂盐与不同前驱体反应, 制备出了层状结构良好的锂离子电池正极材料LiNiO2、LiNi0.8Co0.2O2及LiNi1/3Co1/3Mn1/3O2. X射线衍射分析表明, 合成的材料具有规整的层状NaFeO2结构, 且XRD衍射峰强度之比I(003)/I(104)>2.0, 电性能测试表明, 在2.7-4.3 V(vs Li/Li+)的电压范围内进行0.1C倍率充放电, LiNiO2、LiNi0.8Co0.2O2、LiNi1/3Co1/3Mn1/3O2首次充电比容量分别达168.0、225.4、194.0 mAh·g-1, 放电比容量分别为138.4、165.8、157.7 mAh·g-1.  相似文献   

19.
Li_3PO_4包覆LiMn_2O_4正极材料的结构表征和电化学性能   总被引:1,自引:0,他引:1  
李敏  李荣华  王文继 《化学研究》2007,18(4):98-101
采用共沉淀法在尖晶石LiMn2O4颗粒表面包覆Li3PO4.XRD、SEM研究结果表明,包覆后的材料仍为尖晶石结构,粒径均匀.电化学性能测试表明,Li3PO4包覆层的存在,减少了正极材料与电解液的直接接触,抑制了高温下电解液对LiMn2O4材料的侵蚀,从而有效改善了高温下材料的循环性能.在40℃时,包覆样品的比容量衰减率都低于未包覆样品,其中包覆1%Li3PO4的样品的初始比容量为110.4mAh/g,50次循环后比容量为84.1mAh/g.  相似文献   

20.
The relationship between the electrochemical behavior and the arrangement of lithium/vacancies has been investigated with electrochemical Li removal in Li(x)M(y)Mn(2-y)O4 (x < or = 1.0, 0.0 < or = y < or = 0.3, M = Co, Cr). It was shown that the electrochemical removal proceeds via two voltage regions: (1) approximately 3.9 V at x > or = approximately 0.5 and (2) approximately 4.2 V at x < or = approximately 0.5. To understand the stepwise behavior, entropy measurement of reaction, DeltaS(obs), was performed by using the electrochemical methods. The changes of the sign in deltaS(obs) from negative to positive at the composition x approximately 0.50 in Li(x)M(y)Mn(2-y)O4 indicated that the ordered arrangement of Li/vacancies was formed with electrochemical Li removal. Moreover, such an ordering was suppressed by the substitution of Co3+ and Cr3+ for Mn3+. To clarify the nature and origin of Li/vacancy ordering, the Monte Carlo simulation was performed in view of Coulombic interaction. The simulation reproduced the formation of a new phase arising from Li/vacancy ordering at x = 0.50 in Li(x)Mn2O4. In addition, the ordered arrangement of Li/vacancy at x = 0.5 was perturbed by the trivalent M3+ replacement in spinel structure due to the local clustering of Li+ around M3+. Consequently, the electrochemical behavior in spinel LiMn2O4 was deeply related to the Coulombic interactions, proved by the fact that experimentally observed changes in entropy agreed well with Monte Carlo simulation based on the Coulombic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号