首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Steam reforming of methanol was carried out on the copper-silica aerogel catalyst.The effects of reaction temperature,feed rate,water to methanol molar ratio and carrier gas flowrate on the H_2 production rate and CO selectivity were investigated.M ethanol conversion was increased considerably in the range of about 240-300,after which it increased at a slightly lower rate.The used feed flowrate,steam to methanol molar ratio and carrier gas flowwere 1.2-9.0 m L/h,1.2-5.0 and 20-80 m L/min,respectively.Reducing the feed flowrate increased the H_2 production rate.It was found that an increase in the water to methanol ratio and decreasing the carrier gas flowrate slightly increases the H2production rate.Increasing the water to methanol ratio causes the lowest temperature in which CO formation was observed to rise,so that for the ratio of 5.0 no CO formation was detected in temperatures lower than 375℃.In all conditions,by approaching the complete conversion,increasing the main product concentration,increasing the temperature and contact time,and decreasing the steam to methanol ratio,the CO selectivity was increased.These results suggested that CO was formed as a secondary product through reverse water-gas shift reaction and did not participate in the methanol steam reforming reaction mechanism.  相似文献   

2.
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio.  相似文献   

3.
The oxidative coupling of methane over Mn2O3-Na2WO4/SiO2 catalyst has been investigated in the absence of dilute gas. 16.4% of C2 yield and 80.4% of the selectivity to C2 hydrocarbons were obtained at CH4/O2 = 8.5/1.5. The effect of flow rate on the selectivity to C2 hydrocarbons and CH4 conversion was different under the reaction condition of different ratio of CH4 to oxygen. The flow rate had a more remarkable effect on the selectivity at the lower ratio of methane to oxygen. The addition of steam into the reaction gas can increase C2 yield to some extent, but that of HC1 decrease the selectivity to C2 hydrocarbons.  相似文献   

4.
The oxidation of styrene with molecular oxygen catalyzed by PdCl2 CuCl2 has been investigated in supercritical CO2 with a batch reactor. The oxidative system of styrene contains four components at the beginning and seven components during the reaction. The critical temperature, critical pressure, and critical density at different conversions are determined by using a high-pressure view cell. The effect of phase behavior on the conversion and selectivity were studied. Experimental results showed that the critical parameters of the reaction mixture at fixed initial molar ratio changed with the conversion of reactant. The conversion of styrene reached maximum near the critical density of the reaction mixture. Product selectivity also varied with density of reaction mixture and could be tuned to some degree.  相似文献   

5.
The temperature of the catalyst bed in the oxidative coupling ofmethane would rise and be higher than the wall temperature when the amountof catalyst, the space velocity and the ratio of oxygen to methane wereincreased. Various aspects of the catalytic technology including the thickness ofthe catalyst bed, the mode of catalyst charge, the ratio of CH_4 to O_2 and thespece velocity were studied. An optimum temperature of the catalyst bed forhigher methane conversion and C_2 selectivity was investigated. It was foundthat the burning of methane in the gas phase to form CO occurred at certaintemperatures with some ratios of oxygen to methane. Additionally, the effectof adding water to the reaction feed gas was studied.  相似文献   

6.
 The catalytic performance of Al-MCM-41 containing 5?5 wt% H3PO4 was studied for the vapor phase alkylation of phenol with tert-butyl alcohol (TBA) from 383 to 493 K. 4-Tert-butyl phenol was produced as the main product with moderate selectivity. The product distribution depends on the reaction temperature, number of acid sites, and the Br鰊sted to Lewis sites ratios. A lower molar ratio of reactants (TBA/phenol = 2) and a higher space velocity facilitated the production of 4-tert-butyl phenol. The influence of various parameters such as temperature, reactant feed molar ratio, feed rate, and time on stream were investigated for conversion yield and product selectivity.  相似文献   

7.
The alkylation of methylnaphthalene(MN) with methanol in the presence of HZSM-5 is a promising route for producing 2,6-dimetylnaphthalene(2,6-DMN) with a high selectivity. However, the conversion of MN is very low and the catalyst will be deactivated rapidly with increasing time on stream. In this study, the effects of the reaction pressure on the reactivity, selectivity and life of the catalyst of alkylation of MN over HZSM-5 modified by BaO were investigated. It was observed that with the enhancement of pressure, the conversion of MN increased, but the selectivity of 2,6-DMN kept unchanged, which was about 40% -42%. When the alkylation was carried out under a supercritical condition, the conversion of MN was 3-6 times higher and the life of catalyst was 25-30 times longer than those at an ambient pressure. The thermogravimetric analyses of the deactivated catalysts at different reaction pressures indicate that the amount of coke deposited on the catalysts was about 10% to 12 %, and the coke-burning reactions mainly took place in a temperature range from 720 to 860 K, and the apparent activation energies of the coke-burning catalysts at 0. 1 MPa( 10 h) and 7. 6 MPa( 108 h) were, respectively, 65.90 and 84. 72 kJ/mol. It is concluded from tile results that the supercritical condition is advantageous to enhancing the conversion of alkylation and extraction in situ, and to transporting those high molecular-weight poly-aromatic compounds so as to extend the catalyst life successively.  相似文献   

8.
A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs)was explored.1-Butyl-3-methylimidazolium hydrogen sulphate(BMImHSO4)acting as an effective media and catalyst in aldol reactions was compared with other BAILs,with the advantages of high conversion and selectivity.The product was easily isolated and the left ionic liquid can be readily recovered and reused at least 3 times with almost the same efficiency.The scope and limitation of the present method were explored and the possible catalytic mechanism was speculated.  相似文献   

9.
Pyrolysis of cyclohexane was conducted with a plug flow tube reactor in the temperature range of 873-973 K. Based on the experimental data, the mechanism and kinetic model of cyclohexane pyrolysis reaction were proposed. The kinetic analysis shows that overall conversion of cyclohexane is a first order reaction, of which the rate constant increased from 0.0086 to 0.0225 to 0.0623 s-1 with the increase of temperature from 873 to 923 to 973 K, and the apparent activation energy was determined to be 155.0±1.0 kJ mol-1. The mechanism suggests that the cyclohexane is consumed by four processes:the homolysis of C-C bond (Path I), the homolysis of C-H bond (Path II) in reaction chain initia- tion, the H-abstraction of various radicals from the feed molecules in reaction chain propagation (Path III), and the process associated with coke formation (Path IV). The reaction path probability (RPP) ratio of XPath I:XPath II : XPath III : XPath IV was 0.5420:0.0045:0.3897:0.0638 at 873 K, and 0.4336 : 0.0061 : 0.4885 : 0.0718 at 973 K, respectively.  相似文献   

10.
Oxidation of n-butanol and 2-pentanol using molecular oxygen in supercritical (SC) CO2 with and without co-solvent is investigated. The results showed that the reaction selectivity is high when the reaction is carried out in SC CO2. It has been observed that co-solvent affects conversion and selectivity of the reaction considerably.  相似文献   

11.
低温高活性熔铁催化剂上的超临界相费托合成反应   总被引:1,自引:0,他引:1  
在固定床反应器中超临界相条件下研究了熔铁催化剂上的费托合成反应,发现在超临界介质中反应物和产物更容易扩散,较好地抑制了催化剂表面非活性碳的沉积,从而提高了费托合成反应中的CO转化率和烯烃选择性,增加了链增长因子,降低了甲烷选择性.同时,考察了超临界介质、反应温度、压力、H2/CO比和空速等条件对费托合成反应的影响.结果表明,C5-8正构烷烃在催化剂活性温度下都是适宜的超临界介质.当温度和压力都在介质的临界点以上时,介质表现出较好的传质与传热性能,可改善费托合成反应性能.  相似文献   

12.
超临界和近临界条件下Fischer Tropsch合成研究:溶剂的影响   总被引:2,自引:1,他引:2  
研究了超临界和近临界条件下费托合成过程中溶剂对反应行为的影响。反应在固定床反应器中进行,催化剂为Co/SiO2,所选择的溶剂有两类:纯溶剂(正戊烷和正己烷)和混和溶剂(由正己烷和少量的C5~10烃组成)。结果表明,正己烷分压对CO转化率影响很小,但是产物中1 烯烃含量随正己烷分压增加而增加,超临界条件下1 烯烃含量明显高于非临界条件下。溶剂的种类对CO转化率、CH4和CO2选择性以及产物炭分布影响不大。这一结果表明为了减少溶剂用量,对含有适量轻组分(C5~10)的正己烷溶剂进行循环使用是可行的。结果同时表明与正己烷相比,混和溶剂(25%正己烷和75%正葵烷)具有较高的1 烯烃选择性。  相似文献   

13.
The partial oxidation of methane to CH3OH and HCHO (C1-oxygenates) was evaluated over a low surface area V2O5/SiO2 catalyst. The introduction of low amounts of NO (0-2.92% vol) to the reaction feed strongly enhanced both the conversion of methane and selectivity to C1-oxygenates. In the presence of NO, both the reaction temperature and the CH4/O2 ratio affected selectivity to CH3OH and HCHO. Selectivity values of C1-oxygenates as high as 40% at a methane conversion close to 40% were obtained.  相似文献   

14.
The hydration reaction of α-pinene in the presence of natural clays treated with monochloroacetic acid as catalyst to obtain oxygenated compounds was studied. Catalysts were characterized using X-ray diffraction, differential thermal analysis, programmed thermal desorption of adsorbed pyridine, and infrared spectroscopic analysis of adsorbed pyridine to determine Brønsted and Lewis acid sites. Catalytic tests revealed that treatment of the natural clay with the acid improved the catalytic activity and the selectivity toward oxygenated products by increasing the acidity of the catalyst. The selectivity toward oxygenated compounds increased with the augment of the α-pinene conversion because of greater contact between water molecules with the remaining α-pinene molecules. The natural clay without treatment produced compounds resulting from α-pinene isomerization, whereas the treated clays produced alcohols and other products in addition to isomerization compounds. After a certain time, the α-terpineol was isomerized into cineols. Studies of the reusability of the JAL catalyst were performed (clay treated with monochloroacetic acid). As the number of reuses increased, the percent conversion decreased; however, the selectivity toward oxygenated compounds increased.   相似文献   

15.
Efficient aerobic oxidation of benzylic compounds has been achieved under no irradiation using a new organocatalytic system in the presence of acridine yellow and N-hydroxyphthalimide with assistance of a catalytic amount of molecular bromine. Various substrates, especially alkylaromatics, were effectively oxygenated to the corresponding carbonyl compounds with molecular oxygen as oxidant under mild conditions. For instance, indan was oxidized with 92% conversion and 79% selectivity for 1-indanone under 0.3 MPa of O2 at 75 °C.  相似文献   

16.
The aromatization of n-butane under supercritical conditions on gallium-, zinc-, and platinum-modified high-silica zeolites with a modulus of 30–70 was first studied, and the experimental data were compared to the results of a study of this process in the gas phase. It was found that the operational efficiency of catalysts for n-butane conversion under supercritical conditions was much higher than that for the gas-phase reaction in terms of activity, productivity, and resistance to poisoning by condensation products. The aromatization of gaseous n-butane at 530°C and 1 atm was characterized by rapid catalyst deactivation. The selectivity for the benzene-toluene-xylene (BTX) fraction was higher than 50%. Under supercritical conditions at 430–560°C and 100–200 atm, the selectivity of formation of aromatic compounds decreased by a factor of 2, whereas the yield of C1-C3 cracking products increased by the above factor. On the other hand, it was found that an increase in the productivity of catalysts by a factor of 20–50 with the retention of almost 100% activity for several days of operation is an advantage of the process performed under supercritical conditions. The almost complete conversion of butane under supercritical conditions was found on promoted HZSM-5 zeolite samples. The thermogravimetric analysis of spent samples suggested a higher degree of catalyst carbonization under supercritical conditions, as compared with that in the reaction performed in the gas phase. However, the deposition of 20–30 wt % condensation products on the catalysts had no detectable effect on the high activity of the catalysts in the reaction performed under supercritical conditions.  相似文献   

17.
The flash pyrolysis of various derivatives (hydrocarbons and oxygenated compounds) in the pinane series has been studied. We observed a high degree of conversion and good selectivity.  相似文献   

18.
开环共聚法合成热可逆共价交联聚醚橡胶   总被引:5,自引:1,他引:4  
以烷基铝为催化剂,双环戊二烯二甲酸双缩水甘油酯为交联单体,与环氧氯丙烷、环氧乙烷、环氧丙烷进行离子型开环共聚,制得了热可逆共价交联的聚醚橡胶.研究了聚合方法、聚合配方和工艺条件对单体转化率、共聚物组成的影响.通过 I R 和 D S C 测定及反应溶解性和高温成型实验,证明了共聚物的结构及共价交联的热可逆转化特性.  相似文献   

19.
常压辉光放电等离子体转化CH4制C2烃的研究   总被引:3,自引:0,他引:3  
王达望  马腾才 《化学学报》2006,64(11):1121-1125
采用新型的旋转电极辉光放电反应器, 在常温常压下对辉光等离子体作用下的甲烷转化制C2烃进行了研究. 在氢气共存条件下, 考察了反应器电极的结构、材料, 输入电场峰值电压和反应物流率等参数对甲烷转化率和C2烃单程收率及其选择性的影响规律, 同时比较了不同反应器的能量效率. 结果表明: 在本实验条件下, 金属铜材料好于不锈钢, 螺旋形结构优于三排圆盘结构. CH4转化率和C2烃选择性和收率均随输入电场峰值电压的升高而增大, 随反应物流量的增加而减小. 从CH4转化率、C2烃的收率和选择性的指标来评价这些反应器, 采用旋转螺旋状铜电极反应器时最好, 当反应物流量为60 mL/min时, 甲烷最高转化率为77.31%, 对应的C2烃收率和选择性分别为75.66%和97.88%; 当能量密度为800 kJ/mol时, 能效最高为13.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号