首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous poly (styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis wasachieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymerin the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template orpore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m~2/g) andpore volumes (e.g. 0.6 cm~3/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, porevolumes and pore diameters of the hybrid materials increase.  相似文献   

2.
Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gelreactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radicalpolymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent andfollowed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy(IR), N_2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) andtransmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% templatecontents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m~2/g) as well as high pore volumes (ca.0.53 cm~3/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The porediameters and pore volumes increase as the template content is increased. The pore diameters show a little change uponheating at 200℃ overnight. However, the materials do not have good hydrothermal stability.  相似文献   

3.
Highly porous cellulose was formed by gelation of cellulose carbamate solutions in caustic soda. Two methods for gel preparation were optimized for the formation of beads and bulky materials – the chemical precipitation from dilute sulfuric acid and the thermal gelation by annealing at elevated temperatures. Various methods were used for characterizing of the pores of low density materials: scanning electron microscopy, small angle X-ray scattering, mercury intrusion and nitrogen sorption. These methods were optimized and used for characterizing the complete pore system from micro to macro pores. The effects of different preparation (cellulose carbamate concentration in caustic soda) and processing (precipitation, drying and pyrolysis) on the pore structure were studied by the set of complementary methods. Aerocell samples with a minimum density of 0.06 g/cm3 were prepared from cellulose carbamate. They are characterized by a broad pore size distribution ranging from 0.5 nm to 1 mm, specific internal surfaces of up to 660 m2/g and total pore volumes of up to 18 cm3/g.  相似文献   

4.
以蔗糖为炭源和硅酸钠为硅源,采用原位共聚法制备了炭/氧化硅复合体,除去氧化硅得到介孔炭材料.采用N2吸附-脱附、透射电子显微镜和红外光谱对不同炭化温度获得的样品进行表征.结果表明,随着炭化温度升高,所得的介孔炭比表面积和孔容均下降,650℃ ~ 950℃的炭化温度下获得的样品BET比表面积在586m2/g ~728 m2/g之间,孔容在0.549cm3/g~0.696cm3/g之间,孔径分布5-15nm之间.经红外光谱检测所得的介孔炭样品均含有氢和氧的功能团.  相似文献   

5.
Abstract

The relationship between the textural properties (pore size, pore volume and surface area) of reversed-phase silica gel packings for HPLC and the dynamic loading capacity of large biomolecules was studied by using silica gels manufactured by similar processes. Several silica gels whose unbonded pore diameters range from 100 to 250 A and whose pore volumes range from 1.0 to 1.4 ml/g have been prepared and characterized. The bonded phase is monomeric C18. The textural properties of the bonded silica gels are also presented and related to the properties of the unbonded silica gels.

Chromatographic evaluation with typical proteins in an underload-to-overload condition was performed in order to relate the influence of textural properties of silica gel to loading capacity and resolution. The packings with larger pore size and pore volume produced better column performance and higher loading of proteins.  相似文献   

6.
Mesoporous solids which possess average pore diameters between 7 and 20 nm, depending on the composition, have been prepared. The solids have the general formula Al100PχM20 where M = Al or Fe, and χ = 0, 4.5, 9, 18, 36, 72 or 144. The initial addition of phosphorus as phosphate transforms the originally crystalline oxide/oxides into amorphous solids. These amorphous materials possess a narrow pore size distribution: 80–90% of the pores lie within 1–2 nm of the average pore diameter. Subsequent incremental amounts of phosphorus transform the material into a crystalline solid whilst the pore size distribution becomes much wider and the maximum moves towards larger pore diameters. Substitution of 20% of the aluminium by iron results, at a low phosphorus content, in pores with smaller pore volumes and smaller surface areas.

The data in the dVp/dDp = > Dp) graphs, where Vp is the incremental pore volume and Dp is the average pore diameter, can be approximated using an admixture of Gaussian and Lorentzian curves. For low phosphorus contents the dVp/dDp = (Dp) curves have a mainly Gaussian profile but the gradual addition of phosphorus transforms them to Lorentzian-type curves. An attempt to approximate the histograms dVp =(Dp) with the minimum number of distribution curves made up of the corresponding Gaussian and Lorentzian components indicates that each successive addition of phosphorus creates a dominant new pore component at a larger pore diameter. At the same time, the components at smaller pore diameters are diminished and eventually disappear as more phosphorus is added.  相似文献   


7.
We have developed a smart nanodevice for the highly efficient and selective detection of glycoproteins. This polyfunctional device is fabricated through the rational functionalization of macroporous silica foam (MOSF) materials with a boron species (B‐MOSF) and amino groups (NH2‐MOSF), and then the integration of MOSF, B‐MOSF and NH2‐MOSF materials. In such a device, a macroporous structure with very large‐pore sizes (diameters≈100 nm) and high‐pore volumes (>0.65 cm3 g?1) is advantageous to efficiently fasten the enzymatic reaction. The targeted specific glycopeptides of the products can be selectively isolated and enriched in B‐MOSF through the chemo‐affinity between boronic acid and glycol groups, while the non‐specific peptides are released to the solutions, or further purified by MOSF and NH2‐MOSF, which have opposite charges. As a result, the protein digestion and glycol‐peptide isolation can be simultaneously achieved in the functionalized macroporous materials in one step, which is a great advantage compared to conventional multi‐procedure and time‐consuming techniques.  相似文献   

8.
The facile synthesis of highly ordered mesoporous aluminas with high thermal stability and tunable pore sizes is systematically investigated. The general synthesis strategy is based on a sol-gel process associated with nonionic block copolymer as templates in ethanol solvent. Small-angle XRD, TEM, and nitrogen adsorption and desorption results show that these mesoporous aluminas possess a highly ordered 2D hexagonal mesostructure, which is resistant to high temperature up to 1000 degrees C. Ordered mesoporous structures with tunable pore sizes are obtained with various precursors, different acids as pH adjustors, and different block copolymers as templates. These mesoporous aluminas have large surface areas (ca. 400 m2/g), pore volumes (ca. 0.70 cm3/g), and narrow pore-size distributions. The influence of the complexation ability of anions and hydro-carboxylic acid, acid volatility, and other important synthesis conditions are discussed in detail. Utilizing this simple strategy, we also obtained partly ordered mesoporous alumina with hydrous aluminum nitrate as the precursor. FTIR pyridine adsorption measurements indicate that a large amount of Lewis acid sites exist in these mesoporous aluminas. These materials are expected to be good candidates in catalysis due to the uniform pore structures, large surface areas, tunable pore sizes, and large amounts of surface Lewis acid sites. Loaded with ruthenium, the representative mesoporous alumina exhibits reactant size selectivity in hydrogenation of acetone, D-glucose, and D-(+)-cellobiose as a test reaction, indicating the potential applications in shape-selective catalysis.  相似文献   

9.
Fifty and one-hundred micrometer diameter nanostructured gold hollow microspheres (GHSs), in >98% purity, have been prepared by using ceramic hollow spheres, CHSs, as templates. Tennanometer diameter gold nanoparticles were covalently linked to the thiol moiety of (3-mercaptopropyl)trimethoxysilane, which had been self-assembled onto the CHSs. Greater structural strength was obtained by the generation of additional gold nanoparticles, in situ on the gold nanoparticle coated CHSs (by immersing the gold nanoparticle coated CHSs into an aqueous mixture of hydroxylamine and gold chloride). GHSs were obtained by dissolving the CHSs templates. The sizes, shapes, surface areas (185.3 m2/g for CHSs and 182.9 m2/g for GHSs), pore diameters (7.7 nm for CHSs and 7.8 nm for GHSs), and pore volumes (0.41 cm3/g for CHSs and 0.36 cm3/g for GHSs) of GHSs were quite similar to their CHSs counterparts. Significantly, GHSs showed surface plasmon bands whose maximum (644 nm) shifted from that observed for the parent 10-nm gold nanoparticles (522 nm).  相似文献   

10.
苯乙烯-二乙烯苯共聚物小球经浓硫酸处理后进行高温裂解,得到球形碳化树脂。测定球形碳化树脂的诸物理性质及其对肌酸酐、尿酸的吸附性能,并研究物理性质与吸附性能间的关系。裂解产品比表面可达800M~2/g以上,对肌酸酐和尿酸的吸附率可达98%以上。  相似文献   

11.
有序介孔材料是指孔径在2~50 nm之间的多孔材料, 是一类具有均匀孔径、 高有序度纳米孔道和高比表面积的新材料. 在过去30年里, 有序介孔材料的研究取得了长足的进步, 在可控合成、 结构设计和调控及功能化等方面形成了系统的理论. 同时, 其应用领域也不断被拓展, 包括能源存储与转化、 催化、 生物医药和传感等方面. 本文首先回顾了有序介孔材料的发展历史, 简要介绍发展过程中“里程碑式”的研究工作; 然后根据构效关系总结了其在不同领域应用的最新进展; 最后讨论了有序介孔材料领域进一步发展所面临的挑战与机遇, 并对未来前景进行了展望.  相似文献   

12.
Monolithic and transparent Ti‐incorporated mesoporous silica materials of large size (e.g. 2 mm) in dimension have been prepared with tartaric add (TA) as template via sol‐gel reactions of tetraethyl orthosilicate (TEOS) and tetrabutyl titanate (TBT). The materials are characterized by infrared (IR), nitrogen adsorption‐desorption isotherms, powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The results indicate that the monolithic materials exhibit large specific surface areas (ca. 1200 mVg) and pore volumes (ca. 0.900 cm3/g).  相似文献   

13.
介孔碳担载的 Co-Mo 和 Ni-Mo 加氢脱硫催化剂   总被引:4,自引:0,他引:4  
 自制介孔碳 (CMC) 具有比传统活性碳 (AC) 更大的比表面积、孔径和孔体积, 以其为载体, 在浸渍液中加入螯合剂, 采用等量浸渍法制备了 Co-Mo/CMC 和 Ni-Mo/CMC 催化剂, 分别用于模型汽油和柴油加氢脱硫反应. 结果表明, Co-Mo/CMC 和 Ni-Mo/CMC 催化剂具有比 Co-Mo/AC 催化剂更好的织构性质和加氢脱硫活性. 在模型汽油的加氢脱硫反应中, Co-Mo/CMC 催化剂活性比工业催化剂 Co-Mo/Al2O3 高得多; 而在模型柴油的加氢脱硫反应中, Ni-Mo/CMC 催化剂活性也比工业催化剂 FH-98 高得多.  相似文献   

14.
Silica materials are synthesized by the sol–gel method including the deposition of tetraethoxysilane on various micro- and nanocarbon fibers. The use of nanofibrous carbon as a template makes it possible to prepare thermally stable mesoporous SiO2 samples with unusually high surface areas (up to 1255 m2/g) and high porosity (up to 5.6 cm3/g). These silica materials and aerogels prepared by supercritical drying have comparable pore volumes. It is found by high-resolution electron microscopy that a thin-wall matrix permeated by channels is a prevailing structure of silica materials. When some catalytic fibrous carbons are used as templates, silica nanotubes can be prepared.  相似文献   

15.
The preparation of activated carbon fibers (ACFs) by phosphoric acid activation of poly(p-phenylene benzobisoxazole) (PBO) fibers was studied, with particular attention to the effects of impregnation ratio and carbonization temperature on porous texture. Phosphoric acid has a strong effect on PBO degradation, lowering the temperature range at which the decomposition takes place and changing the number of mass loss steps. Chemical analysis results indicated that activation with phosphoric acid increases the concentration of oxygenated surface groups; the resulting materials also exhibiting high nitrogen content. ACFs are obtained with extremely high yields; they have well-developed porosity restricted to the micropore and narrow mesopore range and with a significant concentration of phosphorus incorporated homogeneously in the form of functional groups. An increase in the impregnation ratio leads to increases in both pore volume and pore size, maximum values of surface area (1250 m(2)/g) and total pore volume (0.67 cm(3)/g) being attained at the highest impregnation ratio (210 wt % H(3)PO(4)) and lowest activation temperature (650 °C) used; the corresponding yield was as large as 83 wt %. The obtained surface areas and pore volumes were higher than those achieved in previous works by physical activation with CO(2) of PBO chars.  相似文献   

16.
赫南  唐颐  王文瀚  华伟明  乐英红  高滋 《化学学报》2000,58(10):1259-1263
提出了一种以氧化硅层柱磷酸锆(SiO~2-ZrP)的前驱体,氨丙基硅酸酯嵌入磷酸锆(APS-ZrP)为载体制备负载氧化铁的氧化硅层术磷酸锆的新方法。与传统方法相比,新方法制得的样品具有较大的比表面和孔容。X射线粉末衍射(XRD)和程序升温还原(TPR)的结果表明采用新方法有利于氧化铁在载体表面的高度分散,分散阈值为0.25gFe~2O~3/g(SiO~2-ZrP),远超过直接以SiO~2-ZrP为载体浸渍草酸铁铵的传统方法得到样品。同时,用新方法制得的氧化铁催化剂表现了较高的乙苯脱氢活性,是一类值得研究的催化材料。  相似文献   

17.
A simple method of preparation of new high surface area spherical carbon adsorbents is presented. The phosphoric acid activation upon hydrothermally formed spherules was employed to produce carbons having controlled high specific surface area (over 2100m(2)/g), large volumes of pores (1.2cm(3)/g), and high acidity. Prepared from sucrose materials show high adsorption capacities (i.e. 220mg/g(C)) toward paracetamol. It is proved that for these materials the contents of surface phosphorus are responsible for the reversibility of drug adsorption/release process.  相似文献   

18.
We report the surfactant-directed assembly of mesoporous metal/germanium-based semiconducting materials from coupling of anionic (Ge 9) (4-) clusters with various linking metal ions. The resulting materials feature a metal/Ge 9 framework perforated by regular arrays of mesoporous channels. The permanent mesoporosity of the materials NU-MGe-2 (M = Sb, In, Sn, Pb, Cd), determined by N 2 physisorption measurements, corresponds to high internal BET surface areas from 127 to 277 m (2)/g and total pore volumes from 0.15 to 0.26 cm (3)/g. The mesoporous structures exhibit energy gaps in the range of 1.48-1.70 eV as well as strong photoluminescence at room temperature with emission energies varying from 740 to 845 nm. The emission depends on pore wall thickness and framework composition. The photoemission intensity in the mesoporous intermetallic germanium-based frameworks can be selectively suppressed by adsorbing electron-acceptor species such as tetracyanoethylene molecules but remains unchanged when exposed to electron-donor species such as tetrathiafulvalene molecules.  相似文献   

19.
Monodisperse porous polymer particles in the size range of 10 μm in diameter were prepared via seeded emulsion polymerization. Linear polymer (polystyrene seed) or a mixture of linear polymer and solvent or nonsolvent were used as inert diluents. The pore diameters of these porous polymer particles were on the order of 1000 Å with pore volumes up to 0.9 mL/g and specific surface areas up to 200 m2/g. The physical features of the porous polymer particles depended on the diluent type and the crosslinker content, as well as the molecular weight of polymer seed particles. By varying the molecular weight of the linear polymer, monodisperse porous polymer particles with different pore size distribution could be synthesized. Polymer seed with a low degree of crosslinking instead of linear polymer could also be used to prepare monodisperse porous polymer particles with smaller pore volume and pore size.  相似文献   

20.
Ceramic materials have been derived from an acid catalyzed sol-gel process. The addition of different molecular weights and concentrations of polyethylene glycol (PEG) to the sol mixture modifies the phase behaviour of the sol-gel process. The resulting gel is burned at 973 K to make porous ceramic materials. Nitrogen adsorption-desorption isotherms are used to assess the effects of PEG on the internal structure of the burned ceramic material. These isotherms indicate an extensive pore network exists consisting of micropores and mesopores. In the micropore region of the isotherms, the S-plot analysis reveals changes in specific primary micropore volumes, specific total pore volumes, specific external surface areas and specific SPE surface area when PEG is added in the sol-gel process. The average pore width and the overall mesopore size distribution curves shift to higher pore size values and ranges on addition of PEG to the sol-gel mixture. The presence of PEG during the sol-gel process leads to an apparent narrowing of the micropore size distribution. The results of this work clearly indicate that the molecular weight and the concentration of a polymer, such as PEG, influences the eventual internal structure of a ceramic after burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号