首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用柠檬酸配合溶胶凝胶法制备了不同La、Sr比例的La_xSr_(1-x)FeO_3催化剂样品,通过X射线衍射(XRD)、比表面积测定(BET)、CO-程序升温还原(CO-TPR)、SO2-程序升温脱附(SO2-TPD)、O2-程序升温脱附(O2-TPD)的方法对催化剂的结构和物理化学性质进行了表征.综合表征结果分析,通过柠檬酸配合法成功制得了具有典型钙钛矿结构的LaxSr1-xFe O3系列复合氧化物;在La Fe O3的结构中A位(La)掺杂替换少量的Sr,可以增大催化剂的比表面积、提高氧化物结构中氧空位的数量、促进反应气体在催化剂中完成反应,大大提升了SO2的催化还原转化效率.实验结果表明,当x为0.8时,CO催化还原SO2的转化率最高,在空速为24 000 m L/(g·h),温度600℃时,转化率达到95%,取得了良好的催化效果.  相似文献   

2.
负载型钙钛矿催化氧化NO及抗SO_2性能研究   总被引:1,自引:0,他引:1  
孙英  黄妍  赵威  苏潜  张俊丰  杨柳春 《燃料化学学报》2014,42(10):1246-1252
采用柠檬酸络合浸渍法制备了负载型钙钛矿氧化物La1-xCexCoO3/CeO2(x=0~0.3)催化剂,考察了不同Ce掺杂量对其催化氧化NO和抗硫性能的影响,并运用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、氮气物理吸附、程序升温还原(H2-TPR)、氧气程序升温脱附(O2-TPD)等手段对催化剂进行了表征。结果表明,催化剂的活性与其比表面积大小和氧化还原性质密切相关;其中,负载型钙钛矿La0.8Ce0.2CoO3/CeO2催化剂在300℃时催化氧化NO的转化率达78%。在添加CeO2作载体后,不仅改善了非负载性钙钛矿的低温活性,而且抗硫性能也显著提高。  相似文献   

3.
采用柠檬酸配合法制备了系列La1-xCaxMn O3+δ(x=0,0.03,0.05,0.07,0.1,0.15,0.2)催化剂,采用低温N2物理吸附,氢程序升温还原(H2-TPR)、氧程序升温脱附(O2-TPD),X-射线衍射(XRD)和X-射线光电子能谱(XPS)研究了其物理化学性质,并考察了甲烷催化燃烧活性.结果表明,当Ca摩尔掺杂量为0.1时,催化活性最好.XRD和BET表征结果表明Ca可以进入钙钛矿结构中,Ca掺杂对催化剂的比表面积无显著影响.H2-TPR和XPS表征结果表明Ca掺杂增加了Mn4+的含量.O2-TPD表征结果表明适量Ca掺杂可以降低晶格氧脱出温度.Mn4+具有较强氧化性,因此提高了催化活性,但随着Ca掺杂量增加,催化剂表面吸附氧含量有所减少,表明气相中氧难以迅速补充消耗的晶格氧,Ca掺杂量继续增加又会使催化活性有所下降.依据反应机理,Ca掺杂一方面可以促进Mn4+含量增加,有利于催化活性;另一方面会使催化剂表面吸附氧含量有所下降,降低了催化活性.  相似文献   

4.
本文制备了一系列 Fe-Mn/Al2O3催化剂,并在固定床上考察了其 NH3低温选择性催化还原 NO的性能.首先考察了不同 Fe负载量制备的催化剂的脱硝性能,优选出最佳的 Fe负载量;在此基础上,研究了 Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗 H2O和抗 SO2性能进行了实验研究;同时,对催化剂由于 SO2所造成的失活机制进行了考察.采用 N2吸附-脱附、X射线衍射、透射电镜、能量弥散 X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的 Fe和 Mn负载量均为8%,所制的8Fe-8Mn/Al2O3催化剂在150°C的脱硝效率可达近99%;同时,在整个低温测试区间(90–210°C)的脱硝效率均超过了92.6%. Fe在催化剂表面主要以 Fe3+形态存在,而 Mn主要包括 Mn4+和 Mn3+; Mn的添加提高了 Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对 NH3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的 Mn4+/Mn3+和增强的表面吸附氧.此外,8Fe-8Mn/Al2O3的催化性能受 H2O和 SO2影响较小,抗 H2O和 SO2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好; SO2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.  相似文献   

5.
采用共沉淀法制备了系列(CeMn)1-xZrxO2[n(CeO2)∶n(MnO2)=6∶4,0≤x≤0.3]催化剂并进行了表征.考察了该系列催化剂对柴油车排放碳烟的催化燃烧性能.X射线衍射和低温氮气吸附-脱附结果表明,向CeMnO2催化剂中引入ZrO2后可以有效稳定催化剂的结构性能和织构性能,当x≥0.2时对结构性能的稳定效果最佳,当x≥0.1时对织构性能稳定效果最佳.氢气-程序升温还原(H2-TPR)结果表明,加入ZrO2后稳定了老化催化剂的低温还原性能,当x=0.2时老化催化剂的低温还原性能最优.氧气-程序升温脱附(O2-TPD)结果表明,加入ZrO2后增加了催化剂表面的阴离子空位,使其吸附和活化氧的能力增强.活性测试结果表明,该系列新鲜催化剂用于碳烟的催化燃烧可有效降低碳烟在燃烧过程中失重速率最大时对应的温度(Tm)约270℃,老化后引入锆的催化剂的稳定性能明显优于无锆催化剂,当x=0.2时催化剂的抗老化性能最佳,于700℃老化20 h前后Tm的差仅有6℃.  相似文献   

6.
采用柠檬酸络合法制备LaMnO3和La0.8K0.2MnO3钙钛矿催化剂,运用程序升温氧化(TPO)考察在不同反应气氛下催化燃烧碳烟的活性,并通过XRD,O2-TPD,NO-TPD,XPS以及NO预处理后O2-TPD等技术对催化剂进行表征和分析。结果表明,NO的存在促进了碳烟的催化氧化,但是对LaMnO3和La0.8K0.2MnO3氧化碳烟的促进效果不同。这与催化剂表面氧空位和活性氧物种有密切联系。  相似文献   

7.
采用共沉淀法制备一系列Ce0.64Mn0.13R0.23Ox(R=La,Zr和Y)催化剂,并用低温N2吸附-脱附(BET)、X射线衍射(XRD)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)和氧气程序升温脱附(O2-TPD)等手段对催化剂进行了表征,同时考察了该系列催化剂对柴油车排放碳烟的催化燃烧性能。研究结果表明该系列催化剂均形成了具有立方萤石结构的固溶体。加入Rn+离子后,催化剂的抗老化性能有了很大的提高,其中加入La的催化剂具有最好的抗老化性能,老化后碳烟催化燃烧的Tm为319℃,适合于柴油车的排气温度,具有较好的应用前景。  相似文献   

8.
采用柠檬酸络合法制备了系列La1-xCaxMnO3+δ(x=0, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2)催化剂,采用低温N2物理吸附,氢程序升温还原(H2-TPR)、氧程序升温脱附(O2-TPD),X-射线衍射(XRD)和X-射线光电子能谱(XPS)研究了其物理化学性质,并考察了甲烷催化燃烧活性。结果表明,当Ca摩尔掺杂量为0.1时,催化活性最好。XRD和BET表征结果表明Ca可以进入钙钛矿结构中,Ca掺杂对催化剂的比表面积无显著影响。H2-TPR 和XPS表征结果表明Ca掺杂增加了Mn4+的含量。O2-TPD表征结果表明适量Ca掺杂可以降低晶格氧脱出温度。Mn4+具有较强氧化性,因此提高了催化活性,但随着Ca掺杂量增加,催化剂表面吸附氧含量有所减少,表明气相中氧难以迅速补充消耗的晶格氧,Ca掺杂量继续增加又会使催化活性有所下降。依据反应机理,Ca掺杂一方面可以促进Mn4+含量增加,有利于催化活性;另一方面会使催化剂表面吸附氧含量有所下降,降低了催化活性。  相似文献   

9.
柴油车尾气排放的碳烟颗粒对人类的生存环境和身体健康带来了严重危害.催化燃烧是消除碳烟颗粒污染的有效途径.碳烟颗粒催化燃烧是固-固-气相反应,因此催化剂本身具有活泼的氧中心且其能与碳烟颗粒有效接触是提高反应效率的关键因素.为改善碳烟颗粒与催化剂的接触,设计制备三维有序大孔(3DOM)催化剂,使碳烟颗粒可以进入催化剂孔道内部,增加其与催化剂的有效接触,是提高反应活性的有效途径.此外,在催化剂晶格中掺杂其它金属离子形成固溶体结构,可提高其氧化还原性能,也可有效提高其碳烟燃烧活性.SnO2富含活泼的表面缺位氧和可还原的晶格氧,且其熔点高达1630 oC,具有良好的热稳定性,被广泛用于制备气体传感、电化学和催化等材料.在过去的6年中,本课题组在SnO2催化化学领域做了大量系统的工作,将SnO2基催化材料用于多种环保和能源反应.发现通过其它阳离子Fe3+,Cr3+,Ta5+,Ce4+和Nb5+等的掺杂,替换晶格中部分Sn4+形成金红石型SnO2固溶体结构,可显著提高催化剂氧物种的流动性、活性和本身的热稳定性.本文采用胶体晶体模板法制备出了Ce4+,Mn3+和Cu2+离子掺杂的SnO2三维有序大孔固溶体催化剂用于松散接触条件下的碳烟催化燃烧.采用SEM,TEM,XRD,STEM-mapping,O2-TPD和XPS等手段对催化剂进行表征,研究其碳烟催化燃烧性能.SEM和TEM结果表明已成功合成三维有序大孔结构样品.XRD,Raman和STEM-mapping结果表明,Ce4+,Mn3+和Cu2+离子均进入四方金红石型SnO2晶格形成固溶体结构.另外,Raman,H2-TPR,XPS和O2-TPD等结果发现上述离子掺杂三维大孔SnO2后,催化剂表面形成了更活泼、丰富的氧物种,有利于碳烟颗粒燃烧.其中3DOM-Cu1Sn9催化剂具有最丰富的活泼氧中心,因此表现出最高的活性.  相似文献   

10.
氮氧化物(NOx)是大气污染的主要因素之一,对其排放的治理成为较为迫切的需求.氨气选择性催化还原法(NH3-SCR)是目前减少NOx排放中应用最为广泛的技术.目前,商业SCR催化剂主要是V2O5(WO3,MO3)/TiO2,但其具有活性温度窗口窄、N2选择性低和对环境影响大等缺点.因此,新型的催化活性高且活性温度窗口宽的环境友好催化剂成为脱硝催化剂的研究热点.CeO2因其独特的氧化还原性能和优异的储释氧能力在催化领域具有广泛应用,在NH3-SCR中也研发出较多类型的铈基催化剂.我们课题组前期研发了具有优异脱硝性能的CeO2(ZrO2)/TiO2催化剂,为拓展其应用范围,需要进行更深入的研究.理论上,Ti4+,Ce4+以及Zr4+离子的价态均高于Er3+,且离子半径相近.换言之,Er2O3能够与TiO2以及CeO2产生缺陷反应增大催化剂的缺陷浓度,进而提高催化剂的催化活性.本文以溶胶-凝胶法制备了一系列Er掺杂CeO2(ZrO2)/TiO2催化剂,测试了样品的NH3-SCR催化活性和N2选择性,并且在320℃下连续24 h测试了水蒸气、SO2以及两者混合作用对催化剂活性的影响.使用X射线衍射(XRD)、N2等温吸附-脱附(N2-BET)、NH3程序升温脱附(NH3-TPD)、H2程序升温还原(H2-TPR)、光致发光光谱(PL)、电子顺磁共振(EPR)以及X射线光电子能谱(XPS)对催化剂进行了表征.XRD结果显示,Er掺杂后催化剂的结晶程度降低,且图谱中没有出现明显的EF2O3衍射峰,即Er在催化剂上有较好的分散度且掺杂抑制了催化剂的晶化.NH3-TPD和H2-TPR结果表明,Er掺杂降低了酸强且提高了储释氧能力,催化剂的氧化还原能力则有所减弱.PL和EPR测试结果显示,掺杂后的催化剂氧空位浓度和Ti3+浓度有所增加,与前期理论设计一致.XPS测试结果表明,掺入Er后催化剂的化学吸附氧含量和Ti3+浓度增加,Ce3+浓度基本不变,推测是CeO2(ZrO2)/TiO2催化剂中掺入的Er主要与载体TiO2,而不是与活性组分CeO2或助剂ZrO2产生缺陷反应的结果.CeO2(ZrO2)/TiO2催化剂最高活性为94.28%,其活性温度窗口为230-390℃,掺入Er (Er∶Ce=0.10∶1)后,催化剂的整体活性尤其是350℃以下的催化活性具有明显提升,最高活性达到98.85%,活性温度窗口也拓展为220-395℃.单独的水蒸气对催化活性影响很小,SO2会部分降低催化剂活性,而当两者混合作用时,催化剂活性下降最为显著,且Er掺杂后CeO2(ZrO2)/TiO2催化剂的抗中毒能力有所增强.Er掺杂CeO2(ZrO2)/TiO2催化剂显示出较好的抗硫抗水中毒能力以及较高的NH3-SCR催化活性和N2选择性,应该是一种具有应用前景的SCR催化剂.Er掺杂降低了催化剂的酸强,抑制了TiO2和铈锆固溶体的晶化,提高了Ti3+和氧空位浓度并增强了储释氧能力,是CeO2(ZrO2)/TiO2催化剂活性提高的主要原因.  相似文献   

11.
采用共沉淀法制备了不同Y含量的MnOx-CeO2-Y2O3催化剂,并用于NOx存在条件下的碳烟氧化反应.通过在干空气气流中800°C焙烧12 h评价了这些催化剂的热稳定性.采用X射线衍射、N2吸附-脱附、拉曼光谱、H2程序升温还原、储氧量测试、NO程序升温氧化、X射线光电子能谱和碳烟程序升温氧化等手段对催化剂进行了表征.实验发现,Y的添加导致催化剂比表面积、还原性能和储氧能力下降,从而影响了NO和碳烟的氧化活性.然而,热老化之后, Y可增大催化剂的热稳定性,其中以6%–10%Y的添加效果最好,它们的最大碳烟氧化速率温度仅增加了34–35°C. MnOx-CeO2催化剂的催化活性和热失活与其表面的Mn4+和氧物种密切相关.  相似文献   

12.
钙钛矿型La1+X/2Sr1-x/2Co1-xCuxO3催化CO氧化活性与表征   总被引:5,自引:0,他引:5  
The catalytic activity and the reactive properties of perovskite-type oxides catalysts La(1+x/2)Sr(1-x/2)Co1-xCuxO3 for CO oxidation reaction were investigated. Results showed that the catalytic activity for CO oxidation reached to a maximum when x=0.4. The temperature for complete CO oxidation under atmospheric and experimental conditions was 168℃. According to the stoicheometry of catalyst, all catalysts were oxygen defect compounds. The active oxygen species on this catalyst was the adsorbed oxygen which was adsorbed on the surface lattice oxygen defect. It was also found that Co4+ existed in the catalysts and the sufrace active oxygen species was caused by the Co4+. It was concluded that CO oxidation reaction on this catalyst was carried out by the valence change between Co3+ and Co4+ which was adjusted by the adsorbed oxygen.  相似文献   

13.
采用等体积浸渍法制备两个系列不同V和K负载量的VOx/ZrO2和K-VOx/ZrO2催化剂.利用程序升温氧化反应(TPO)技术对VOx/ZrO2和K-VOx/ZrO2催化碳黑氧化的活性进行了考察.实验结果表明,当催化剂中V的负载量nV/nZr=4/100时, VOx/ZrO2催化剂的活性最好.添加K能显著改善VOx/ZrO2催化剂的活性,当K的添加量为nK∶nV∶nZr=1∶4∶100时,碳黑氧化的反应温度最低.催化剂的红外光谱和紫外-可见光谱表征的结果表明, nV/nZr=4/100时,催化剂的表面形成聚合的V物种浓度最大.由于聚合的V物种具有较强的氧化还原能力,因而能显著地降低柴油碳黑的氧化温度.当K-VOx/ZrO2催化剂中nK/nV超过1/4时,由于形成KVO3物种,催化剂表面原子的移动性减弱,因而催化活性降低.  相似文献   

14.
采用溶胶-凝胶法通过在静态空气中700°C焙烧制备了不同Fe掺杂量的La0.7Sr0.3Co1-xFexO3(x=0,0.2,0.6,1.0)系列钙钛矿催化剂.考察了Fe掺杂量对催化剂的结构、氮氧化物储存、抗硫及再生性能的影响.研究结果表明:在La0.7Sr0.3CoO3钙钛矿B位用Fe部分取代Co,可有效提高SrCO3物相的分散,X射线衍射(XRD)结果显示样品中基本为钙钛矿物相.随着Fe掺杂量的增加,催化剂的NOx储存量(NSC)下降.对预硫化样品进行NOx储存测试,发现La0.7Sr0.3CoO3催化剂由于表面沉积了硫酸盐,同时钙钛矿结构也遭到了部分破坏,使得NOx储存量和NO氧化能力均大幅度下降,NOx储存量下降了64.2%,NO-to-NO2转化率从72.8%降至43.4%.掺杂Fe元素后,催化剂的抗硫性能都有不同程度的提高,特别是Fe掺杂量为60%的样品具有最佳的抗硫性能和可再生性能.与新鲜样品相比较,再生后样品的NOx储存量仅下降16.6%,而NO-to-NO2转化率为69.1%,几乎与新鲜样品相同.  相似文献   

15.
采用柠檬酸配合燃烧法和共沉淀法制备了MnOx(0.4)-CeO2催化剂,用于模拟碳烟的燃烧.通过XRD、BET、Raman、H2-TPR、O2-TPD与XPS表征催化剂的结构和表面活性物种,并借助原位拉曼研究碳烟的催化氧化机理.结果表明柠檬酸配合燃烧法制备的MnOx(0.4)-CeO2-CA催化剂中有更多的Mn进入了CeO2的立方萤石结构,比表面积更大,氧空位、Mn4+和Ce4+更多,因而氧化还原性能更好,催化氧化碳烟的活性更高.O-在碳烟的氧化中起重要作用,Mn4+和Ce4+有利于氧化反应的进行,氧空位的增加能提高氧的吸附、迁移和转化能力,促进了碳烟的氧化.反应路径为O-溢出参与碳烟的氧化,同时产生氧空位,部分晶格氧O2-补充O-,气相氧不断吸附到氧空位上得到活化生成O2-,O2-转化为O-(可进一步转化为O2-),O-迁移至碳烟颗粒表面参与反应,生成CO2.  相似文献   

16.
钙钛矿型CO氧化催化剂耐SO2中毒性质的研究   总被引:4,自引:0,他引:4  
钙钛矿型CO氧化催化剂耐SO2中毒性质的研究马春曦王宝辉(大庆石油学院石油化工系安达151400)关键词钙钛矿型催化剂一氧化碳氧化硫中毒近年来,人们对钙钛矿型复合物CO氧化催化剂作了大量研究,证明其具有很高的CO氧化活性[1-3],并开始尝试应用于汽...  相似文献   

17.
制备了系列金属氧化物催化剂, 研究了富氧条件下单一金属氧化物同时催化去除碳颗粒和NOx的活性, 考察了碳颗粒与催化剂之间的接触方式对催化活性的影响, 并分析了碳颗粒和NOx催化同时去除的路径. 结果表明, Cr、Mn、Co和Ni金属氧化物催化剂对碳颗粒和NOx同时去除具有较高的催化活性, 并且在催化剂与碳颗粒之间“松散接触”方式下依然具有较高的活性; 其同时催化去除碳颗粒和NOx的路径为, 催化剂催化NO氧化成NO2, NO2促进碳颗粒氧化去除, 而碳颗粒氧化的中间物CO还原NO, 促进NOx还原去除.  相似文献   

18.
孙传智  陈葳  贾轩轩  刘安鼐  高飞  冯帅  董林 《催化学报》2021,42(3):417-430,中插19-中插24
氮氧化物(NOx)是主要的环境污染物之一,会造成酸雨、光化学烟雾和温室效应等环境问题.氨选择性催化还原(NH3-SCR)技术是目前控制NOx排放的最有效技术.其中,Fe2O3催化剂因其良好的抗硫性和低廉的成本而受到广泛关注,有望用作NOx消除催化剂,但是它的低温还原性差、脱硝效率低等缺点限制了其应用.近期研究表明,钐掺杂金属氧化物可以调节其表面酸碱性及氧化还原性,可有效提高氧化物催化剂的脱硝效率和抗水抗硫性能.因此,将铁、钐二者优势结合,为合成一种低温、高效、环境友好型脱硝催化剂提供了可能.本文通过柠檬酸辅助的溶胶凝胶法合成了一系列钐均匀掺杂入Fe2O3纳米颗粒的复合氧化物脱硝催化剂,采用X射线光电子能谱(XPS),氢气程序升温还原(H2-TPR),氨气程序升温脱附(NH3-TPD)以及原位漫反射红外光谱(in situ DRIFTS)等方法研究了钐的掺杂对铁基催化剂脱硝效率和抗水抗硫性的影响,旨在揭示催化剂表面物理化学性质和催化活性之间的关系.通过活性测试发现,钐的掺杂可以使Fe0.94Sm0.06Ox催化剂在175?325℃时实现>95%的脱硝效率和>93%的N2选择性.动力学测试研究表明,当基于催化剂的比表面积计算时,Fe0.94Sm0.06Ox催化剂的脱硝效率是纯Fe2O3催化剂的11倍;基于质量计算时则为37倍.此外,250℃时抗水抗硫测试结果显示,Fe0.94Sm0.06Ox催化剂可以在通入200×10-6SO2+5 vol%H2O,空速为90000 h-1时脱硝效率保持83%达168小时,并且在切断H2O和SO2后,该催化剂的脱硝效率可以很快完全恢复.XPS和H2-TPR结果表明,钐的掺杂使Fe0.94Sm0.06Ox催化剂的表面产生了大量的表面吸附氧,从而促进了NO的氧化以及快速NH3-SCR反应的进行.NH3-TPD与原位DRIFTS结果表明,钐的掺杂增强了催化剂的表面酸性,有效地提高了NH3的吸附和活化能力,进而提高了催化剂的脱硝效率.另外,钐的掺杂还可以促使NH4HSO4在Fe0.94Sm0.06Ox催化剂表面较低温度下的分解,从而使催化剂具有很好的抗水抗硫性能.  相似文献   

19.
通过助剂掺杂的方法解决MgF2催化剂高温失活的问题。采用溶胶-凝胶法制备了一系列Fe^3+掺杂的高比表面MgF2催化剂,并通过N2吸附-脱附测试、X射线衍射(XRD)、能量色散X射线光谱(EDS)和NH3程序升温脱附技术(NH3-TPD)、电子自旋共振(ESR)、X射线光电子能谱(XPS)等对FeF3/MgF2催化剂的物化性质进行了表征。结果表明,一定量(物质的量分数小于20%)的Fe^3+掺杂可以有效地减少MgF2晶粒度,且随着Fe^3+掺杂量的增加,催化剂的比表面积、酸性及1,1-二氟乙烷(R152a,C2H4F2)脱HF反应的催化活性均呈现增加趋势,但当Fe^3+掺杂量超过20%时,催化剂明显失活。  相似文献   

20.
Fe-K/AC催化氧化脱硫剂制备及反应机理研究   总被引:3,自引:0,他引:3  
采用正交实验法制备了负载铁、钾的活性炭(Fe-K/AC)热煤气催化氧化脱硫剂,考察了活性组分铁、钾含量、二价铁和三价铁比例、煅烧温度对催化氧化脱硫反应活性的影响。由正交实验极差分析可知,各因素影响程度依次为:钾含量>铁含量>煅烧温度> Fe2+/Fe3+,最优制备条件为,铁含量0.5%、钾含量5.0%、煅烧温度600 ℃、Fe2+/Fe3+比0.5。通过对脱硫剂的孔隙结构和表面形貌分析可知,活性炭表面负载的铁金属氧化物具有催化氧化硫化氢生成单质硫的活性,碱金属氧化物具有协同作用,可以改变表面酸碱性,促进硫化氢的催化转化,但过高的金属氧化物负载量会阻塞孔道,减小反应比表面积,从而降低脱硫剂的反应活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号