首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
研究表面活性剂分子在水溶液中的聚集行为对模拟生物膜功能和研究分子间相互作用具有重要意义"'.用于形成囊泡双分子层的表面活性剂主要是类似天然磷脂的双烷基链两亲分子,单烷基链两亲分子在引人刚性基团时亦可形成双分子膜k'.含SChiff碱基两亲分子在水溶液中的聚集性质及间、尾链长度对SChiff碱基构象的影响已有报道"'.本文报道了这类分子的另一种重要成膜性质,即改变制备条件,可选择性地得到不同聚集结构和相变温度的双分子膜·实验中所用成膜分子为:CH。(CH。)。;OPh-N-CH-PhO(CH;)n;N"(CH。)。Br-(m-4;n-…  相似文献   

2.
Gemini表面活性剂是通过联接基团将两个具有亲水亲油性质的两亲结构单元在其亲水头基上或靠近亲水头基处以共价键方式连接而成的一类表面活性剂。这类表面活性剂由于联接基团的引入具有比传统单链表面活性剂更高的表面活性,同时分子结构中更多的可调控因素使其在水溶液中表现出更为丰富的自聚集行为,而且分子不同部位结构的改变对分子内或分子间相互作用产生不同的影响,可实现通过分子结构的设计有效调控其自聚集能力和聚集体结构。本综述将从联接基团、烷基链、亲水头基、反离子和其它功能性基团这五个方面概述近些年Gemini表面活性剂水溶液中聚集行为方面的研究进展,总结人们对Gemini表面活性剂分子间相互作用规律的认识,期望对于进一步发展这类高效的表面活性剂体系提供有益的帮助。  相似文献   

3.
1977年Kunitake等首次报道了双十二烷基二甲基溴化铵在水溶液中自组织成类似于卵磷脂双层结构的囊泡,泡壁即为双分子膜。该发现表明可以用人工合成方法建造仿生组织,开辟了合成双分子膜研究的新领域。单链两亲性成膜物质,一般由亲水基团、间链、刚性生色基和尾链4部分组成。本文报道4-(4′-十六烷氧基-4-联苯氧基)丁基三甲基溴化铵  相似文献   

4.
一种新型两性表面活性剂的合成   总被引:2,自引:0,他引:2  
史真  刘婕好 《应用化学》1993,10(5):84-86
两性表面活性剂分子既含有阳离子亲水基,又含有阴离子亲水基,因而有其它表面活性剂所不具备的优异性能。本文将月桂酸和N-(2-羟乙基)乙二胺热缩合脱水,得到2-十一烷基-1-(2-羟乙基)-2-咪唑啉(1)。接着在还原剂的作用下,咪唑啉环碳氮双键还原并开环得到一般方法难以合成的N,N-二取代乙二胺(2)。(2)通过甲酰化(3)季铵化,引入两性离子,得到  相似文献   

5.
通过用短链离子液体(1-乙基-3-甲基咪唑溴盐[C2mim]Br、1-丁基-3-甲基咪唑溴盐[C4mim]Br)部分或全部取代SDS/DTAB/PEG/NaBr/H2O多水相体系中的无机盐NaBr,用长链离子液体十二烷基-3-甲基咪唑溴盐[C12mim]Br部分取代体系中阳离子表面活性剂DTAB,系统研究了离子液体在分相体系中的作用及其对分相体系性质的影响.研究表明,SDS/DTAB/PEG/NaBr/H2O混合体系形成的四水相体系可以看作"聚合物双水相"与"表面活性剂双水相"共存的结果.短链离子液体([C2mim]Br、[C4mim]Br)较强的亲水性能赋予其较强的盐析能力,在混合体系中表现出明显的盐效应,保证了四水相体系中"聚合物双水相"的存在.短链离子液体与聚合物之间的相互作用及其对表面活性剂之间相互作用的影响均不可忽略.对混合体系的相行为,共存多相的性质有重要的影响.而长链离子液体[C12mim]Br主要通过自身的疏水作用影响"表面活性剂双水相"的性质,充当表面活性剂的角色.然而,[C12mim]Br与DTAB分子结构上的差异,导致表面活性剂分子在"表面活性剂双水相"的两相重新分配,影响了对应两相的体积及萃取能力.可见,通过调节离子液体的烷基链长、混合体系中的含量等可获得具有特定性质的多水相体系.  相似文献   

6.
邰子厚  钱向平  邹娟  杨思军  张富生 《化学学报》1994,52(11):1071-1075
本文研究了四种合成的二氮杂芴酮Schiff碱两亲配体分子C~1~1N~2H~6NC~nH~2~n~+~1(n=18,16,14,12)所形成的单分子膜,双分子膜的特性,并用透射电镜,紫外- 可见光谱及微量差示扫描量热观察了在所形成的囊泡中分子的聚集形式与相变过程.结果表明,该系列两亲配体分子所形成的单分子膜和双分子膜具有良好的稳定性,在稀溶液中能自组织成双层结构的囊泡  相似文献   

7.
郭霞  李华  郭荣 《物理化学学报》2010,26(8):2195-2199
DNA(包括寡聚核苷酸)和阳离子表面活性剂可形成难溶复合物.本文通过浊度测试和透射电子显微镜观察,发现单链阳离子表面活性剂可以诱使寡聚核苷酸/单链阳离子表面活性剂沉淀转变成为寡聚核苷酸/单链阳离子表面活性剂囊泡,且寡聚核苷酸/单链阳离子表面活性剂囊泡可以与寡聚核苷酸/单链阳离子表面活性剂沉淀共存.在寡聚核苷酸/单链阳离子表面活性剂沉淀向囊泡的转变过程中,表面活性剂和沉淀之间的疏水作用力发挥了重要作用.此外,当体系温度达到寡聚核苷酸开始融解的温度后,寡聚核苷酸/单链阳离子表面活性剂体系更容易形成囊泡.因此,寡聚核苷酸的链越伸展,越易于寡聚核苷酸/单链阳离子表面活性剂囊泡的生成.据我们所知,有关寡聚核苷酸/阳离子表面活性剂囊泡的报道尚不多见.因此,考虑到DNA(包括寡聚核苷酸)/两亲分子体系在医学、生物学、药学和化学中的重要性,该研究应该有助于我们进一步了解该体系并对其进行更合理有效的应用.  相似文献   

8.
联接基对双子表面活性剂12-s-12表面活性的影响   总被引:6,自引:0,他引:6  
双子表面活性剂是通过一个联接基将两个传统表面活性剂分子在其亲水头基或接近亲水头基处联接在一起而形成的 类新型表面活性剂,属于低聚表面活性剂范畴[1-3],通常表示为m-s-m·2X,其中m表示两个疏水尾基的碳原子数,s表示联接基中亚甲基,X代表反离子.  相似文献   

9.
采用小幅低频振荡和界面张力弛豫技术, 考察了疏水缔合水溶性聚丙烯酰胺(HMPAM)在正癸烷-水界面上的扩张黏弹性质, 研究了不对称Gemini表面活性剂C12COONa-p-C9SO3Na对其界面扩张性质的影响. 研究发现, 疏水链段的存在, 使HMPAM在界面层中具有较快的弛豫过程, 扩张弹性显示出明显的频率依赖性. 表面活性剂分子可以通过疏水相互作用与聚合物的疏水嵌段在界面上形成类似于混合胶束的特殊聚集体. 表面活性剂分子与界面聚集体之间存在快速交换过程, 可以大大降低聚合物的扩张弹性. 同时, 聚合物分子链能够削弱表面活性剂分子长烷基链之间的强相互作用, 导致混合吸附膜的扩张弹性远低于单独表面活性剂吸附膜.  相似文献   

10.
正负离子表面活性剂与两性表面活性剂的相互作用   总被引:3,自引:0,他引:3  
本文研究正负离子表面活性剂与两性表面活性剂混合水溶液的表面性质, 以及两性表面活性剂对正负离子裘面活性剂溶解度的影响。结果表明: (1) 两性表面活性剂的加溶作用,有助于正负离子表面活性剂的溶解; (2) 加入两性表面活性剂的量适当, 混合溶液基本保持原正负离子表面活性剂的表面活性; (3) 正负离子表面活性剂与两性表面活性剂在表面层和胶团中分子间的相互作用比正负离子表面活性剂与非离子表面活性剂分子间的相互作用稍强HC-FC正负; 离子表面活性剂与两性表面活性剂混合体系在表面层中有可能形成双分子或多分子层结构。  相似文献   

11.
In deuterium ((2)H) NMR spectroscopy of fluid lipid bilayers, the average structure is manifested in the segmental order parameters (S(CD)) of the flexible molecules. The corresponding spin-lattice relaxation rates (R(1Z) depend on both the amplitudes and the rates of the segmental fluctuations, and indicate the types of lipid motions. By combining (2)H NMR order parameter measurements with relaxation studies, we have obtained a more comprehensive picture of lipids in the liquid-crystalline (L(alpha)) state than formerly possible. Our data suggest that a lipid bilayer constitutes an ordered fluid, in which the phospholipids are grafted to the aqueous interface via their polar headgroups, whereas the fatty acyl chains are in effect liquid hydrocarbon. Studies of (2)H-labeled saturated lipids indicate their R(1Z) rates and S(CD) order parameters are correlated by a model-free, square-law functional dependence, signifying the presence of relatively slow bilayer fluctuations. A new composite membrane deformation model explains simultaneously the frequency (magnetic field) dependence and the angular anisotropy of the relaxation. The results imply the R(1Z) rates are due to a broad spectrum of 3-D collective bilayer excitations, together with effective axial rotations of the lipids. For the first time, NMR relaxation studies show that the viscoelastic properties of membrane lipids at megahertz frequencies are modulated by the lipid acyl length (bilayer thickness), polar headgroups (bilayer interfacial area), inclusion of a nonionic detergent (C(12)E(8)), and the presence of cholesterol, leading to a range of bilayer softness. Our findings imply the concept of elastic deformation is relevant on lengths approaching the bilayer thickness and less (the mesoscopic scale), and suggest that application of combined R(1Z) and S(CD) studies of phospholipids can be used as a simple membrane elastometer. Heuristic estimates of the bilayer bending rigidity kappa and the area elastic modulus K(a) enable comparison to other biophysical studies, involving macroscopic deformation of thin membrane lipid films. Finally, the bilayer softness may be correlated with the lipid diversity of biomembranes, for example, with regard to membrane curvature, repulsive interactions between bilayers, and lipid-protein interactions.  相似文献   

12.
In this work we have studied the interaction of zervamicin IIB (ZrvIIB) with the model membranes of eukaryotes and prokaryotes using all-atom molecular dynamics. In all our simulations zervamicin molecule interacted only with lipid headgroups but did not penetrate the hydrophobic core of the bilayers. During the interaction with the prokaryotic membrane zervamicin placed by its N-termini towards the lipids and rotated at an angle of 40° relatively to the bilayer surface. In the case of eukaryotic membrane zervamicin stayed in the water and located parallel to the membrane surface. We compared hydrogen bonds between peptide and lipids and concluded that interactions of ZrvIIB with prokaryotic membrane are stronger than those with eukaryotic one. Also it was shown that two zervamicin molecules formed dimer and penetrated deeper in the area of lipid headgroups.  相似文献   

13.
Coexisting liquid phases of model membrane systems are chemically identified using imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS). The systems studied were Langmuir-Blodgett (LB) model membranes of cholesterol (CH) with two different phospholipids, one a major component in the outer plasma membrane bilayer leaflet (dipalmitoylphosphatidylcholine (PC)) and the other a major component in the inner leaflet (dipalmitoylphosphatidylethanolamine (PE)). Binary mixtures of CH with each of the phospholipids were investigated, as well as a ternary system. A single homogeneous phase is evident for PC/CH, whereas both systems containing PE show lateral heterogeneity with phospholipid-rich and CH-rich regions. The interaction between CH and the two phospholipids differs due to the disparity between the phospholipid headgroups. Imaging TOF-SIMS offers a novel opportunity to chemically identify and differentiate the specific membrane locations of CH and phospholipid in membrane regions without the use of fluorescent dyes. This unique imaging method has been used to demonstrate the formation of micrometer-size CH domains in phosphatidylethanolamine-rich systems and is further evidence suggesting that CH may facilitate transport and signaling across the two leaflets of the plasma membrane.  相似文献   

14.
以充蜡石墨电极作为新型支撑体,成功制备了一种季铵离子为内层(包括四丁 基铵TBA,十六烷基三甲基铵CTrMA),己二酸(HDA)为外层的新型自组装混合双 层膜,以循环伏安和电化学交流阻抗方法研究了膜的离子通道行为。该膜能够接受 Ca~(2+)的刺激作用而打开[Fe(CN)_6]~(3-/4-)电极氧化还原的离子通道,撤走该 刺激离子则通道关闭。提出了混合双层膜的结构和离子通道作用的模型,指出外层 膜HDA分子可能具有V型和W型两种结构。  相似文献   

15.
An intermolecular interaction model for selective association processes of double-chain phospholipids in bilayer lipid membranes has been proposed, analysed and solved numerically. A large variety of binary mixtures of asymmetrical double-chain phospholipids with the cross-sectional areas of the polar headgroups a1 = 40 Å2 (the first component) and a2 = 60 Å2 (the second component) have been investigated. Changing the hydrophobic acyl-chain lengths of both mixture components, we found in all cases that the self-association probability (the association of like-pairs of phospholipids) of the first component in parallel alignment of the electric dipole moments of the polar headgroups is higher than the cross-association probability (the association of cross-pairs of phospholipids) and the self-association probability of the second component. This result is in good agreement with the experimental evidence that where the cross-sectional area of the polar headgroups matches the hydrocarbon chain-packing cross-sectional area (a 2Ξ 40 Å2), lipids possess a high tendency to aggregate into well packed bilayer structures with the acyl-chains oriented perpendicularly to the bilayer plane. Our theoretical data confirm that the double-chain phospholipids may associate themselves into anti-parallel alignment of the polar headgroups (P22) as well. The hydrophobic acyl-chain effect of phospholipids may modulate the distribution of lipid domains within bilayers that have a large variety of functional roles in cellular metabolism.  相似文献   

16.
The locational and orientational structure and the dynamics of cholesterol in the bilayer membrane were studied by using the solution-state NMR. The intermolecular nuclear Overhauser effect (NOE) was analyzed for large unilamellar vesicles (100 nm in diameter) composed of dimyristoylphosphatidylcholine (DMPC) and cholesterol at cholesterol concentrations of 9-33 mol %. The DMPC headgroups show (1)H-{(1)H}-NOEs with the methyl groups at the hydrophobic terminals of both cholesterol and DMPC, illustrating the significant fluctuation of the bilayer membrane in the vertical (bilayer normal) direction. Cholesterol was found to keep the hydroxyl (OH) group toward the outer water pool on the basis of the following observations: (1) the cross correlation between the DMPC headgroup and the cholesterol terminal methyl group is weaker than those between the DMPC headgroups and (2) the methyl group at the hydrophobic terminal of cholesterol shows strong correlation with the terminal group of the DMPC chain portion. The OH group plays a crucial role in orienting cholesterol with its OH group outward, since cholestane, which has a molecular structure similar to that of cholesterol except for the absence of the OH group, was found to have no orientational preference in the bilayer membrane. The dynamic slowdown at high cholesterol concentrations is demonstrated on the basis of the correlation times for NOE as well as the broadening of the proton linewidths.  相似文献   

17.
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was employed to investigate the interaction of cholesterol with the headgroups of dimyristoylphosphatidycholine (DMPC) molecules under a static electric field. DMPC/cholesterol (7:3 molar ratio) mixtures form a bilayer on a Au(111) electrode surface by fusion and spreading of small unilamellar vesicles. PM-IRRAS experiments provided detailed information concerning the conformation and hydration of headgroups of DMPC bilayers in the presence and absence of 30% cholesterol. The presence of 30% cholesterol increases the space between the headgroups of DMPC molecules and hence increases the hydration of the DMPC/cholesterol mixed bilayer. The conformational state of the headgroups of DMPC molecules in the mixed bilayer is also significantly changed. The phosphate group is closer to the surface compared with the pure DMPC bilayer. The conformation of the -O-C-C-N moiety changes from gauche to trans in the presence of cholesterol.  相似文献   

18.
Five new cavitands were prepared that have four pendant n-undecyl chains and "headgroups" connected by 2-carbon spacers. The headgroups were ~OCH(2)CONH-Ala-OCH(3), 1; ~OCH(2)CONH-Phe-OCH(3), 2; ~OCH(2)CONH-Ala-OH, 3; ~OCH(2)CONH-Phe-OH, 4; and ~OCH(2)CONHCH(2)CH(2)-thyminyl, 5. Pore formation by each cavitand was studied by use of the planar bilayer conductance experiment. All five compounds were found to form pores in asolectin bialyer membranes. Compounds 1-3 behaved in a generally similar fashion and exhibited open-close dynamics. Compounds 4 and 5 formed pores more rapidly, were more dynamic, and led more quickly to membrane rupture. Differences in the ion transport activity are rationalized in terms of structure and aggregate cavitand assemblies.  相似文献   

19.
Stable vesicles composed of cationic and anionic single-tailed-surfactant were prepared, and their image obtained by electron microscopy with negative staining technique. Significant fluorescence enhancement for acridine orange in vesicle with regards to water has been observed. In heterogeneous vesicle solution composed of mixed cationic and anionic surfactants for the energy transfer between acridine orange (D) and pyronine (A), the Förster dipole-dipole model was valid, and it is interesting to note that the energy transfer rate constant (kET) was smaller than that in homogeneous aqueous solution. On the inside and outside of the stable vesicle, immiscible water solution of acridine orange and pyronine could be obtained, and the distance calculated from the energy transfer between D and A separated by the bilayer membrane implied that the location of ionic dye molecules was in the Gouy-Chapman layers of the vesicles. Furthermore, due to the electrostatic absorption of the dye molecules to charged headgroups of surfactants, acridine orange and pyronine accumulated and aggregated to the vesicle bilayer membrane.  相似文献   

20.
Delivery of siRNA is a major obstacle to the advancement of RNAi as a novel therapeutic modality. Lipid nanoparticles (LNP) consisting of ionizable amino lipids are being developed as an important delivery platform for siRNAs, and significant efforts are being made to understand the structure-activity relationship (SAR) of the lipids. This article uses a combination of small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) to evaluate the interaction between cholesterol-conjugated ionizable amino lipids and biomembranes, focusing on an important area of lipid SAR--the ability of lipids to destabilize membrane bilayer structures and facilitate endosomal escape. In this study, cholesterol-conjugated amino lipids were found to be effective in increasing the order of biomembranes and also highly effective in inducing phase changes in biological membranes in vitro (i.e., the lamellar to inverted hexagonal phase transition). The phase transition temperatures, determined using SAXS and DSC, serve as an indicator for ranking the potency of lipids to destabilize endosomal membranes. It was found that the bilayer disruption ability of amino lipids depends strongly on the amino lipid concentration in membranes. Amino lipids with systematic variations in headgroups, the extent of ionization, tail length, the degree of unsaturation, and tail asymmetry were evaluated for their bilayer disruption ability to establish SAR. Overall, it was found that the impact of these lipid structure changes on their bilayer disruption ability agrees well with the results from a conceptual molecular "shape" analysis. Implications of the findings from this study for siRNA delivery are discussed. The methods reported here can be used to support the SAR screening of cationic lipids for siRNA delivery, and the information revealed through the study of the interaction between cationic lipids and biomembranes will contribute significantly to the design of more efficient siRNA delivery vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号