首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   6篇
数学   1篇
物理学   1篇
  2011年   2篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有8条查询结果,搜索用时 250 毫秒
1
1.
In this article we compare the classical monopole mass filter of von Zahn and the monopole mass filter with a hyperbolic V-shaped electrode. The experimental results and those of computer simulation for both mass spectrometers are presented. We show that the replacement of a conventional 90 degrees V-shaped electrode by an electrode with a hyperbolic profile substantially improves the peak shape of any given mass, and increases the mass resolution by a factor of 3-4 and the abundance sensitivity by a factor of 100. The potential of high analytical performance combined with electroforming techniques for electrode manufacture indicate future practical uses of such instruments. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
2.
Short-chain alpha-neurotoxins from snakes are highly selective antagonists of the muscle-type nicotinic acetylcholine receptors (nAChR). Although their spatial structures are known and abundant information on topology of binding to nAChR is obtained by labeling and mutagenesis studies, the accurate structure of the complex is not yet known. Here, we present a model for a short alpha-neurotoxin, neurotoxin II from Naja oxiana (NTII), bound to Torpedo californica nAChR. It was built by comparative modeling, docking and molecular dynamics using 1H NMR structure of NTII, cross-linking and mutagenesis data, cryoelectron microscopy structure of Torpedo marmorata nAChR [Unwin, N., 2005. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967-989] and X-ray structures of acetylcholine-binding protein (AChBP) with agonists [Celie, P.H., van Rossum-Fikkert, S.E., van Dijk, W.J., Brejc, K., Smit, A.B., Sixma, T.K., 2004. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41 (6), 907-914] and antagonists: alpha-cobratoxin, a long-chain alpha-neurotoxin [Bourne, Y., Talley, T.T., Hansen, S.B., Taylor, P., Marchot, P., 2005. Crystal structure of Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors. EMBO J. 24 (8), 1512-1522] and alpha-conotoxin [Celie, P.H., Kasheverov, I.E., Mordvintsev, D.Y., Hogg, R.C., van Nierop, P., van Elk, R., van Rossum-Fikkert, S.E., Zhmak, M.N., Bertrand, D., Tsetlin, V., Sixma, T.K., Smit, A.B., 2005. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant. Nat. Struct. Mol. Biol. 12 (7), 582-588]. In complex with the receptor, NTII was located at about 30 A from the membrane surface, the tip of its loop II plunges into the ligand-binding pocket between the alpha/gamma or alpha/delta nAChR subunits, while the loops I and III contact nAChR by their tips only in a 'surface-touch' manner. The toxin structure undergoes some changes during the final complex formation (for 1.45 rmsd in 15-25 ps according to AMBER'99 molecular dynamics simulation), which correlates with NMR data. The data on the mobility and accessibility of spin- and fluorescence labels in free and bound NTII were used in MD simulations. The binding process is dependent on spontaneous outward movement of the C-loop earlier found in the AChBP complexes with alpha-cobratoxin and alpha-conotoxin. Among common features in binding of short- and long alpha-neurotoxins is the rearrangement of aromatic residues in the binding pocket not observed for alpha-conotoxin binding. Being in general very similar, the binding modes of short- and long alpha-neurotoxins differ in the ways of loop II entry into nAChR.  相似文献   
3.
Cobra cytotoxins, small proteins of three-fingered toxin family, unspecifically damage membranes in different cells and artificial vesicles. However, the molecular mechanism of this damage is not yet completely understood. We used steered molecular dynamics simulations to study the interaction of cardiotoxin A3 from Naja atra cobra venom with hydrated 1-palmitoyl-2-oleoyl-1-sn-3-phosphatidylcholine (POPC) bilayer. The studied system included one cytotoxin molecule, 64 lipid molecules (32 molecules in each monolayer) and 2500 water molecules. It was found that the toxin interacted with zwitterionic bilayer formed by POPC. During first nanosecond of simulation the toxin molecule was oriented toward membrane surface by loops' basement including cytotoxin regions Cys14-Asn19 and Cys38-Ser46. This orientation was stable enough and was not changed during next 6 ns of simulation. The obtained data suggest that cytotoxin molecule cannot penetrate into membrane composed of zwitterionic lipids without some auxiliary interaction.  相似文献   
4.
Cyclic voltammetry was used to study the electrode behavior of indium arsenide with (111)A orientation in an ammonia-glycol electrolyte with NH4F additive in a wide range of potentials and sweep rates. A mechanism of anodic oxidation of indium arsenide is suggested and substantiated.  相似文献   
5.
Asymptotic analysis of the problem describing deformation ofa thin cylindrical plate with clamped lateral side is performed.The problem is considered under the most general statement withthe plate being laminated and consisting of an arbitrary numberof nonhomogeneous and anisotropic (21 elastic moduli) layers.Explicit integral representations of the differential operatorswhich form the two-dimensional model of the plate are derived.In the case when the elastic moduli of each of the layers areconstant, these integral representations turn into algebraicones. The asymptotic procedure is justified with the help ofa weighted inequality of Korn's type. The error estimates obtainedgive a rigorous mathematical proof of both of Kirchhoff's hypotheses(kinematic and static) and shed light on the well-known intrinsicinconsistency of two of the hypotheses.  相似文献   
6.
Weak toxins are the "three-fingered" snake venoms toxins grouped together by having an additional disulfide in the N-terminal loop I. In general, weak toxins have low toxicity, and biological targets have been identified for some of them only, recently by detecting the effects on the nicotinic acetylcholine receptors (nAChR). Here the methods of docking and molecular dynamics simulations are used for comparative modeling of the complexes between four weak toxins of known spatial structure (WTX, candoxin, bucandin, gamma-bungarotoxin) and nAChRs. WTX and candoxin are those toxins whose blocking of the neuronal alpha7- and muscle-type nAChR has been earlier shown in binding assays and electrophysiological experiments, while for the other two toxins no such activity has been reported. Only candoxin and WTX are found here to give stable solutions for the toxin-nAChR complexes. These toxins appear to approach the binding site similarly to short alpha-neurotoxins, but their final position resembles that of alpha-cobratoxin, a long alpha-neurotoxin, in the complex with the acetylcholine-binding protein. The final spatial structures of candoxin and WTX complexes with the alpha7 neuronal or muscle-type nAChR are very similar and do not provide immediate answer why candoxin has a much higher affinity than WTX, but both of them share a virtually irreversible mode of binding to one or both these nAChR subtypes. Possible explanation comes from docking and MD simulations which predict fast kinetics of candoxin association with nAChR, no gross changes in the toxin conformation (with smaller toxin flexibility on alpha7 nAChR), while slow WTX binding to nAChR is associated with slow irreversible rearrangement both of the tip of the toxin loop II and of the binding pocket residues locking finally the toxin molecule. Computer modeling showed that the additional disulfide in the loop I is not directly involved in receptor binding of WTX and candoxin, but it stabilizes the structure of loop I which plays an important role in toxin delivery to the binding site. In summary, computer modeling visualized possible modes of binding for those weak toxins which interact with the nAChR, provided no solutions for those weak toxins whose targets are not the nAChRs, and demonstrated that the additional disulfide in loop I cannot be a sound criteria for joining all weak toxins into one group; the conclusion about the diversity of weak toxins made from computer modeling is in accord with the earlier phylogenetic analysis.  相似文献   
7.
In this work we have studied the interaction of zervamicin IIB (ZrvIIB) with the model membranes of eukaryotes and prokaryotes using all-atom molecular dynamics. In all our simulations zervamicin molecule interacted only with lipid headgroups but did not penetrate the hydrophobic core of the bilayers. During the interaction with the prokaryotic membrane zervamicin placed by its N-termini towards the lipids and rotated at an angle of 40° relatively to the bilayer surface. In the case of eukaryotic membrane zervamicin stayed in the water and located parallel to the membrane surface. We compared hydrogen bonds between peptide and lipids and concluded that interactions of ZrvIIB with prokaryotic membrane are stronger than those with eukaryotic one. Also it was shown that two zervamicin molecules formed dimer and penetrated deeper in the area of lipid headgroups.  相似文献   
8.
Two spiro analogues of 2-amino-5,6-dihydro-4H-1,3-thiazine, a known NO-synthase inhibitor, were synthesized by means of cyclization of N-2-(1-cyclohexenyl)ethylthioureas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号