首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
综述了热塑性树脂/蒙脱土(MMT)纳米复合材料近年来的研究进展,并重点介绍极性热塑性树脂/MMT纳米复合材料、非极性热塑性树脂/MMT纳米复合材料以及两种聚合物与MMT三元复合体系,讨论其改性方法,展望了热塑性树脂纳米复合材料的发展前景。  相似文献   

2.
本文综述了国内外有关利用环氧树脂改性热塑性树脂共混体系研究的最新进展。着重阐述了环氧树脂在热塑性树脂之间的增容作用,如尼龙6(PA6)合金体系,改性聚苯乙烯塑料(ABS)合金体系,以及聚对苯二甲酸丙二醇酯(PTT)合金体系等。同时,介绍了利用环氧树脂的反应活性提高无机填料在聚合物中分散性研究的情况,如二氧化硅纳米粒子在聚醚砜(PES)中,以及滑石粉在聚丙烯(PP)中分散性的提高。最后,简介了环氧树脂改性热塑性树脂提高热塑性树脂物理机械性能方面的研究方向和成果并展望了环氧树脂在热塑性树脂改性研究中的前景。  相似文献   

3.
热塑性树脂的增强:从原位复合材料到原位混杂复合材料   总被引:8,自引:0,他引:8  
何嘉松 《高分子通报》1997,(4):197-202,237
综述了两类增强的热塑性树脂的基本方面。一类是由原位形成的热致液晶聚合物微纤增强的原位复合材料。从实验上研究了获得有效增强效果的两个关键因素;致热液晶聚合物的基体树脂中的成纤,以及在液晶聚合物与基体树脂不相容共混物中的增容作用。另一类是由作者发明的原位混杂复合材料,这一类材料是用直径在两个数量级上的纤维和原位形成的微纤混杂增强的。  相似文献   

4.
对几种不同热塑性树脂改性热固性树脂体系反应诱导相分离过程,包括UCST(最高互溶温度)、LCST(最低互溶温度)体系和含有复杂多步反应体系,在耐高温高分辨热台显微镜、流变仪和小角激光光散射仪上进行了研究.发现体系的反应诱导相分离时间/温度关系遵循Arrhenius方程.其相分离活化能对体系反应速率、粘弹性变化、体系中热塑性树脂的含量和分子量不敏感,也不受相分离检测手段的影响,而依赖于树脂化学环境相容性和交联反应的温度依赖性.对这一共性的物理本质进行了讨论.  相似文献   

5.
含二氮杂萘酮联苯结构聚芳醚是一类综合性能优异的耐高温热塑性树脂,可采用多种方式加工成型。与传统聚芳醚相比,具有低成本、优异的高温力学性能和良好的溶解性等优势,可作为基体树脂应用于制备复合材料。本文主要介绍了近几年在含二氮杂萘酮联苯结构热塑性聚芳醚树脂基复合材料方面的研究进展,包括玻璃纤维增强复合材料、碳纤维增强复合材料...  相似文献   

6.
文章展示了植物纤维/热塑性树脂共混复合材料的应用前景,阐述了在应用开发中存在和应注意的问题,分析了植物纤维与塑料共混中的技术关键。  相似文献   

7.
将聚丙烯与尼龙6的共混物在毛细管流变仪中挤出,通过显微形态观察发现,在研究的共沸比范围和较宽的剪切速度和温度范围内尼龙6均能在聚丙烯基体中成纤,表明这种热塑性树脂的成纤性比热致液晶聚合物的更好。  相似文献   

8.
硫酸钙晶须改性双马来酰亚胺树脂摩擦磨损性能的研究   总被引:1,自引:0,他引:1  
研究了载荷、偶联剂及硫酸钙晶须用量对双马来酰亚胺树脂摩擦磨损性能的影响及材料的磨损机制.结果表明,当摩擦载荷较大时,树脂基体在摩擦过程中出现明显的塑性变形和裂纹,而经过硫酸钙晶须改性的复合材料体系则塑性变形和裂纹情况得到明显的改善,并且磨损量显著降低.载荷从200 N增大到300 N后,树脂基体的磨损机制从粘着磨损过渡为严重的疲劳磨损,添加晶须体系仍以粘着磨损为主.晶须添加量较小时,复合材料的磨损机理主要为粘着磨损,晶须添加量较高时,磨粒磨损占主导地位.  相似文献   

9.
研究了不同偶联剂及钛酸钾晶须添加量对钛酸钾晶须 /双马来酰亚胺树脂复合材料的摩擦磨损性能的影响 .结果发现 ,钛酸钾晶须能明显提高复合材料的耐磨性 ,晶须的加入使材料的磨损率得到显著降低 ;钛酸钾晶须对材料具有一定的润滑性 ,添加晶须后材料的摩擦系数与树脂基体基本相当 ;偶联剂对复合材料的摩擦系数影响不大 ,但是合适的偶联剂对材料耐磨性的提高则具有明显的作用 .晶须添加量较低时 ,复合材料的磨损机理主要为较严重的粘着磨损 ,晶须添加量较高时 ,疲劳磨损占主导地位 .  相似文献   

10.
酚醛树脂因其材料成本低、工艺简单、原料易得等优点,在工业上得到了广泛应用。但由于其耐热性不足以及游离酚含量较高等因素,限制了其应用范围。本文利用硼酸对酚醛树脂进行改性,利用红外和质谱对其结构进行表征,改性后酚醛树脂的耐热性能、游离酚等指标得到明显改善。当失重20%时酚醛树脂改性前后耐热性能提高了56℃,可能是由于硼酚醛树脂中含有硼的三维交联网状结构,提高了树脂的交联密度;游离酚含量从改性前的4.12%降低到了2.21%,说明硼元素的引入改变了苯酚的活性,提高了树脂聚合度。  相似文献   

11.
《Mendeleev Communications》2022,32(2):164-166
MQ resins have been prepared in acetic acid as an active medium from dimethylphenyl- or methyldiphenylethoxy-silane as the M-components and tetraethoxysilane as the Q-component. All prepared samples with M/Q ratios of 1:1, 1:1.5, 1:2, 1:3, and 1:4 were well soluble in organic solvents like toluene and THF. Compared to MQ resins with trimethylsilyl group as the M-component, the new MQ resins with phenyl substituents may possess improved compatibility to thermoplastic polymers, rubbers and coating formulations.  相似文献   

12.
基于具有刚性主链结构的4,4'-(六氟亚异丙基)双邻苯二甲酸酐/对苯二胺(6FDA/p-PDA)树脂体系, 通过共聚引入间苯二胺(m-PDA)、 4,4'-二氨基-2,2'-双三氟甲基联苯(TFDB)和9,9'-双(4-氨基苯基)芴(BAFL)等主链刚性且兼具大自由体积特性的芳香二胺, 以非反应性封端剂邻苯二甲酸酐(PA)对分子量进行调控, 设计制备了系列分子量可控的热塑性聚酰亚胺(TPI)树脂. 系统研究了共聚结构和分子量对TPI树脂熔融性能和耐热性能的影响, 构建了聚合物的聚集态结构与树脂熔融性能的对应关系, 并对树脂的室温和高温力学性能进行了评价. 研究结果表明, 大自由体积的芳香二胺共聚结构的引入可有效降低分子链堆砌密度, 增大聚合物的自由体积, 从而赋予树脂良好的熔融性能. 降低设计分子量可进一步改善树脂的熔融加工性. 这类具有刚性主链结构的TPI树脂兼具优异的耐热性能和力学性能, 树脂的玻璃化转变温度在308~338 ℃之间, 以TFDB和BAFL共聚制备的TPI-C-25K和TPI-D-25K树脂表现出高强高韧的特性, 拉伸和弯曲强度分别超过120 MPa和190 MPa, 断裂伸长率大于8.2%, 并且在250 ℃高温下表现出良好的耐热稳定性.  相似文献   

13.
The plastic deformation mechanisms in both thermoplastic and thermoset polyimide resins and their semi-interpenetrating networks (semi-IPNs) were investigated. The fundamental tendency to undergo strain localization (crazing and shear banding) as opposed to a more diffuse (or homogeneous) deformation in these polymers was evaluated. In situ polarized light microscopic observation of crack-tip deformation mechanisms in solvent-cast films was conducted with a miniature testing device attached to the microscope stage. NASA LaRC TPI, a thermoplastic polyimide, was found to exhibit combined shear yielding and crazing under plane-stress loading conditions. Contrarily, NR-150B2 thermoplastic polyimide exhibited diffuse shear yeilding; no shear banding or crazing was found near the crack tip. Adding a small amount of thermoplastic component, either NR-150B2 or LaRC TPI, was found to raise considerably the fracture toughness of PMR-15 thermoset PI. PMR-15 thermoset films also showed diffuse shear yielding, albeit with a much smaller deformation zone. This was consistent with its low toughness and could be understood on the basis of a limited extensibility of a highly crosslinked network. Numerical calculations were performed to confirm this low value of network chain draw ratio. The dimensions of the deformation zone ahead of the crack tip in a semi-IPN with a thermoset matrix were increased as a higher weight fraction of the thermoplastic component was added. The deformation zone size of a thermoplastic matrix was found to decrease with an increasing amount of thermoset PMR-15. Deformation also became more diffuse with a higher PMR-15 content in LaRC TPI. Fracture toughness variations can be correlated with deformation size changes in these semi-IPNs.  相似文献   

14.
Raman spectroscopy including mapping technique appears as a powerful technique for the characterization of polymer blends like thermoplastic elastomers (TPEs) and thermoplastic vulcanizates (TPVs). The Raman spectra of polymers blends such as natural rubber/polypropylene (NR/PP) and 65% hydrogenated natural rubber/polypropylene (65%HNR/PP) were identified and the phase distribution was determined. The study was driven for the same type of blends in TPEs state and TPVs state obtained after to 2 different processes, either peroxide cure or sulfur cure. The morphology of TPEs and TPVs obtained by Raman spectroscopy were compared and confirmed using scanning electronic microscopy.Raman mapping shows that the phase morphology of NR/PP, 65%HNR/PP, were characterized as continuous rubber phase morphology of the thermoplastic elastomers (TPEs) and a fine dispersion of cross-linked rubber phase in a continuous matrix of the thermoplastic vulcanizates (TPVs). Raman spectroscopy is demonstrated to be a reference to determine the content ratio of each component in the TPVs. Moreover, Raman mapping could be used to calculate the phase size of cross-linked rubber phase dispersed in the thermoplastic vulcanizates (TPVs).  相似文献   

15.
Thermoset (TS) epoxy resins can be toughened with a thermoplastic (TP) for high-performance applications. The final structure morphology has to be controlled to achieve high mechanical properties and high impact resistance. Four polyethersulfone-modified epoxy resins are considered. They consist of different epoxy monomer structure (TGAP, triglycidyl-p-aminophenol and TGDDM, tetraglycidyl diaminodiphenylmethane) and a fixed amount of thermoplastic, and they are cured with two different amounts of curing agent. A reaction-induced phase separation occurs for all formulations generating morphologies, different in shapes and scales. The aim is to control the final morphology and in particular its dominant length scale. This morphology depends on the phase separation process, from the initiation to its final stage. The initiation relies on the relative miscibility of the components and on the stoichiometry between epoxy and curing agent. The kinetics depends on the viscosity of the systems. The different morphologies are characterized by electron microscopy or neutron scattering. Dynamic mechanical analysis allows confirming the presence of a phase separation even when it is not observable by electron microscopy. Vermicular morphologies with few hundreds nanometer width are obtained for the systems containing the TGAP as epoxy monomer. Systems formulated with TGDDM presents morphologies on much smaller scale of order a few tens of nanometers. We interpret the different sizes of the morphologies as a consequence of a larger viscosity for the TGDDM systems as compared to the TGAP ones rather than by a latter initiation of phase separation.  相似文献   

16.
Solid thermoplastic resins were prepared by acid-catalyzed condensation of phenol and crotonaldehyde (both crude and distilled). The thermal and curing properties were compared with the conventional phenol-formaldehyde (PF) novolak resins. Phenol-crotonaldehyde (PC) resins were found to be thermoplastic even after curing with the crosslinking agent hexamethylenetetramine up to 160°C. This curing behavior was observed irrespective of the purity of the crotonaldehyde or the phenol-to-crotonaldehyde mole ratio in the resin. Postcuring of these resins at elevated temperatures yielded insoluble and infusible thermoset products. This unique thermal characteristic could lead to interesting processing possibilities for the resins. The technical feasibility of thermoplastic processing of the PC resins followed by postcure heat treatment for transforming the molded part into a thermoset has been demonstrated.  相似文献   

17.
In order to assess the most suitable thermoplastic polymer for a certain application, one must know the properties of the available polymers. Since data tend to be widely scattered over many sources, it is the purpose of this article to give an overview of the most relevant properties of a range of thermoplastic polymers. The reported properties are divided into mechanical, physical, and thermal ones. It is clear that many of these properties are interrelated. By consequence some combinations of desired properties are not possible but an overview such as this may provide a useful guide in establishing the best compromise between conflicting property demands. Data are presented mostly as ranges (in tables) as well as in graphs for quick comparison reasons. One specific application (thermoplastic pultrusion with flax as reinforcement) is also studied. In this particular case, polypropylene is found to have the best combination of properties in order to be used as the composite matrix.  相似文献   

18.
Acid-catalyzed polycondensation of phenol and crotonaldehyde results in soluble thermoplastic resins over a broad range of compositions. The thermal and curing behavior of the resins are found to vary markedly with the phenol to crotonaldehyde mole ratio and the purity of crotonaldehyde. Infrared analysis of the resins and their fractions separated by column chromatography indicates that all the resins are structurally similar. The number-average molecular weights of the resins fall in the range of 400 to 600. The resins from distilled crotonaldehyde exhibit higher molecular weights than those from crude crotonaldehyde. The thermal properties of the resins are comparable to the Novolak-type phenol-formaldehyde resins. The thermoplastic nature is retained even at higher fraction of crotonaldehyde, unlike for the conventional Novolak resins.  相似文献   

19.
Two amidoxime chelating resins were prepared. The preparation process was carried out through copolymerization of acrylonitrile with N,N′-methylene-bis-acrylamide (MBA) as a crosslinker in the presence and absence of magnetite (Fe3O4) particles. The resins obtained were subsequently treated with hydroxylamine to give the corresponding amidoxime chelating resins. The uptake behavior of the resins toward Hg(II) in aqueous solutions using batch and column techniques was studied. The oxide containing resin gave higher uptake capacities relative to oxide free resin confirming the advantage of embedded particles on the uptake capacity. Thermodynamic and kinetic parameters of the uptake process were calculated. Regeneration of the resins was carried out using 0.5 M KI and the desorption ratio was found to be more than 97%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号