首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使乙醛酸(GA)与氯甲基化交联聚苯乙烯(CMCPS)微球发生酯化反应,将醛基(AG)引入交联聚苯乙烯(CPS)微球表面,得到改性微球CPS-AG;再以间氨基苯酚(MAP)为试剂,使微球CPS-AG表面的AG发生席夫碱反应,制得了表面键合有氨基酚型双齿席夫碱配基的功能微球CPS-AGAP;最后,使微球CPS-AGAP与硫酸氧钒发生配位螯合反应,获得了表面固载有氨基酚型双齿席夫碱氧钒(Ⅳ)配合物的固体催化剂微球CPS-[VO(AGAP)2]。重点考察了主要因素对GA与CMCPS微球的酯化反应的影响。采用红外光谱(FT-IR)、固体紫外(UV)及扫描电子显微镜(SEM)对催化剂微球进行了充分表征。分别将微球CPS-[VO(AGAP)2]用于环己醇和乙苯的分子氧氧化过程,考察其催化活性。实验结果表明,溶剂的极性有利于GA与CMCPS微球之间的酯化反应,极性较强的N,N-二甲基乙酰胺为适宜的反应溶剂,90℃为适宜的反应温度。在适宜的反应条件下,CMCPS微球的氯甲基转化率可以达到82%。在分子氧氧化环己醇和乙苯的过程中,非均相催化剂CPS-[VO(AGAP)2]微球均表现出良好的催化活性。  相似文献   

2.
李艳飞 《分子催化》2013,27(3):271-278
以交联聚苯乙烯(CPS)微球为初始物质,通过大分子反应,制备了键合有苯甲醛(BA)的聚合物微球BA-CPS,又以3-氨基吡啶(AP)为试剂,使微球BA-CPS与之发生席夫碱反应,制得了键合有N,N-双齿席夫碱配基的微球BAAP-CPS;然后使微球BAAP-CPS与硫酸氧钒发生配位螯合反应,成功制备了固载有N,N-双齿席夫碱型氧钒(Ⅳ)配合物的微球CPS-[VO(BAAP)2].用红外光谱(FTIR)和固体紫外吸收光谱等手段对微球CPS-[VO(BAAP)2]的化学结构进行了表征.将微球CPS-[VO(BAAP)2]用于乙苯的分子氧催化氧化过程,考察了其催化活性及主要因素对乙苯催化氧化反应的影响,探索研究了催化反应机理.实验结果表明,在分子氧氧化乙苯的反应中,微球CPS-[VO(BAAP)2]具有很高的催化活性和优良的催化选择性,可将乙苯高效地(45%的转化率)转化为单一产物苯乙酮.氧化反应可能遵循自由基反应历程,乙苯侧烷基氢过氧化物可能是关键的中间物.适宜的反应温度为110℃,且体系中催化剂有一适宜用量.  相似文献   

3.
两步后交联法制备氯甲基化聚苯乙烯交联微球   总被引:2,自引:0,他引:2  
以平均粒径为40μm的非交联氯甲基化聚苯乙烯(CMPS)微球为出发物料,采用水解-轻度交联与重度交联两步骤的后交联方法,制备了氯甲基化聚苯乙烯交联微球.用红外光谱表征了交联前后微球化学结构的变化,使用扫描电镜观察了交联微球的形貌,重,点考察了各种交联条件对微球交联度的影响规律,分析了交联反应机理.结果表明:先将非交联氯甲基化聚苯乙烯微球部分水解并轻度交联,然后使CMPS微球在良溶剂中溶胀,使用Friedel-Crafts催化剂,再度进行交联反应,可顺利地制得氯甲基化聚苯乙烯(CCMPS)交联微球;控制交联反应的条件,如反应温度、反应时间、溶剂性质、催化剂种类与用量等,可获得交联度不同的微球,其球形度依然保持良好.  相似文献   

4.
在缚酸剂Na2CO3存在下,使溶胀的氯甲基化交联聚苯乙烯(CMCPS)微球表面的氯甲基与对羟基苯甲醛(HBA)发生亲核取代反应,制得了醛基(AL)化改性的交联聚苯乙烯(ALCPS)微球;利用所制得的ALCPS微球与甘氨酸(GL)发生缩合反应,制备了同时含有席夫碱配基与羧基的席夫碱型螯合树脂AGCPS微球。采用红外光谱法表征了微球功能基团的结构变化,重点研究了CMCPS微球醛基化改性反应,考察了影响亲核取代反应的主要因素,推测和探讨了反应的机理。研究表明,CMCPS微球表面的苄氯基团与HBA缩合反应的速率与HBA的浓度无关,属于典型的SN1反应;使用极性较强的溶剂DMF,在较高的反应温度(90℃)下,有利于亲核取代反应的进行。所得席夫碱型螯合树脂对铜离子具有较强的螯合吸附能力。  相似文献   

5.
采用简捷高效的方法在交联聚苯乙烯(CPS)微球表面同步合成与固载了N-羟基邻苯二甲酰亚胺(NHPI),制备了非均相催化剂CPS-NHPI微球,我们将其用于分子氧对二苯甲醇的氧化过程,探索研究了其催化性能与催化氧化机理,并考察了主要因素对其催化性能的影响.研究结果表明,将固体催化剂微球CPS-NHPI与过渡金属盐组合形成复合催化剂,可有效地催化分子氧对二苯甲醇的氧化过程.在几种过渡金属盐中,助催化效果的顺序是VO(acac)2Co(OAc)2Co Cl2Mn(OAc)2.显然,乙酰丙酮氧钒盐的助催化效果最好.共催化体系CPS-NHPI+VO(acac)2可在温和条件(75℃、常压的氧气)下高效地将二苯甲醇催化氧化转变为二苯甲酮(二苯甲醇转化率为35.8%,且二苯甲酮是唯一产物),显示出良好的催化活性与优良的催化选择性,催化氧化反应遵循自由基链式反应的机理.体积比为7∶3的乙腈与乙酸乙酯的混合液为适宜的反应溶剂;VO(acac)2与固载NHPI的摩尔比为1∶15时,助催化剂的投加量较为适宜.固体催化剂CPS-NHPI还具有良好的再循环使用性能.  相似文献   

6.
以交联聚苯乙烯(CPS)微球为基质,经过几步大分子反应在微球表面合成与固载了N-羟基邻苯二甲酰亚胺(NHPI),形成固载有NHPI的聚合物微球CPS-NHPI。本文主要将CPS-NHPI与过渡金属盐组成共催化体系,用于分子氧氧化甲苯的反应,考察了该非均相催化剂的催化特性与催化氧化机理。结果表明,几种过渡金属盐中,Co(OAc)2的助催化效果最好;微球CPS-NHPI与Co(OAc)2所构成的共催化体系,在温和条件(80℃和常压氧气)下可有效地将甲苯深度氧化为苯甲酸,显现出高的催化活性(甲苯转化率达到57%)与优良的选择性(苯甲酸的选择性达到84%)。催化氧化反应遵循自由基链式反应机理。主催化剂CPS-NHPI固载的NHPI与助催化剂Co(OAc)2适宜的摩尔比为14∶1,主催化剂所含NHPI为底物的12(mol)%时,催化剂用量较为合适。固体催化剂CPS-NHPI具有良好的再循环使用性能。  相似文献   

7.
通过大分子反应,将苯甲醛(BA)和邻氨基苯酚(AP)形成的双齿席夫碱配基键合在交联聚甲基丙烯酸缩水甘油酯(CPGMA)微球表面,形成固载有席夫碱配基的载体微球BAAP-CPGMA,再通过与铜盐的配位螯合反应,制备了固载有席夫碱铜配合物的微球[Cu(BAAP)2]-CPGMA.将该固载化铜配合物与均相的2,2,6,6-四甲基哌啶氮氧自由基(TEMPO)构成共催化体系TEMPO/[Cu(BAAP)2]-CPGMA,应用于分子氧氧化苯甲醇的催化氧化过程.我们考察了该共催化体系的催化性能,并探索研究了催化氧化机理.实验结果表明,共催化体系TEMPO/[Cu(BAAP)2]-CPGMA可在温和条件下(室温、常压的氧气)高效地将苯甲醇氧化为苯甲醛(选择性100%,苯甲醛产率93%),并具有良好的循环使用性能.  相似文献   

8.
王玲  高保娇 《应用化学》2010,27(3):257-261
采用ω-氯代酰氯试剂氯乙酰氯和氯丁酰氯,在Lewis酸催化剂存在下,于室温下分别与交联聚苯乙烯(CPS)微球进行了Friedel-Crafts酰基化反应,制备了氯代酰基化(chloroacylation,CA)的交联聚苯乙烯微球(CACPS),用红外光谱与佛尔哈德分析法表征了产物的化学结构与组成,研究了各种因素对反应过程的影响。 结果表明,在Friedel-Crafts酰基化反应过程中,伴随的副反应─微球表面聚苯乙烯大分子之间的Friedel-Crafts烷基化附加交联反应,不但降低了在CPS微球表面引入氯代酰基的效率,还使微球变脆。 在室温(25 ℃)下,以CHCl3溶剂、催化剂SnCl4与白球中聚苯乙烯链节的摩尔比为1.2∶1、采用10 mL/g CPS微球的溶剂用量反应5 h,可以达到酰基化反应和烷基化交联副反应的最佳平衡点(此时的氯含量最高)。 结果还表明,采用氯丁酰氯对CPS微球进行氯代酰基化反应的效果明显好于氯乙酰氯。  相似文献   

9.
丁浩  高保娇  程伟 《应用化学》2013,30(3):276-282
氯甲基化交联聚苯乙烯(CMCPS)微球的氯甲基与苯甲醛衍生物2-羟基-3-甲氧基苯甲醛(HMBA)发生傅克烷基化反应,形成改性微球HMBA-CPS;微球HMBA-CPS与环己二胺发生席夫碱反应,形成键合Salen配基的微球Salen-CPS;最后,使之与锰盐发生配位螯合反应,制得了固载有手性Mn(Ⅲ)-Salen配合物的固体催化剂Mn(Ⅲ)Salen-CPS,分别采用红外光谱、紫外/可见吸收光谱及扫描电子显微镜对固体催化剂的结构与形貌进行了表征和观察。 研究了微球CMCPS与HMBA之间傅克烷基化反应的规律。 结果表明,以AlCl3为Lewis酸催化剂,使用二氯甲烷与硝基苯混合溶剂,可有效地实施CMCPS与HMBA的傅克烷基化反应,制得固体催化剂Mn(Ⅲ)Salen-CPS。 在V(CH2Cl2)∶V(NB)=10∶1的混合溶剂中,40 ℃下反应10 h,可制得氯甲基转化率近于51%的改性微球HMBA-CPS。 该制备途径具有简便、高效与快捷的特点。  相似文献   

10.
以二甲基亚砜(DMSO)为氧化剂,然后采用Kornblum氧化法,将氯甲基化的交联聚苯乙烯(CMCPS)微球表面的氯甲基氧化成醛基,制备了醛基化改性的交联聚苯乙烯(AL-CPS)微球,研究了主要反应条件对改性反应的影响规律。结果表明,在使用催化剂KI及缚酸剂NaHCO3并在110℃下,溶胀在DMSO中的CMCPS微球能被有效地转化为表面带有醛基的改性微球AL-CPS,成为同步合成与固载卟啉的前驱体。随后,以微球AL-CPS、溶液中的苯甲醛及吡咯为共反应物,通过固-液界面上的Alder反应,实现了四苯基卟啉(TPP)在交联聚苯乙烯(CPS)微球表面的同步合成与固载,制得了固载有卟啉的微球TPP-CPS。  相似文献   

11.
代新  高保娇  丁浩  房晓琳 《应用化学》2012,29(4):383-391
以氯甲基化交联聚苯乙烯(CMCPS)微球为出发物质,首先在催化剂KI存在下,与六次甲基四胺(HMTA)进行Delepine反应,制得氨基化改性的聚苯乙烯微球AMCPS;然后再使微球AMCPS与水杨醛(SA)发生Schiff碱反应,制备了Schiff碱型螯合树脂SACPS微球,采用红外光谱法表征了其化学结构。 重点研究了CMCPS微球氨基化改性Delepine反应的影响因素,探讨了反应机理。 研究结果表明,催化剂KI对CMCPS微球表面的苄氯基团与HMTA之间的Delepine反应,具有很强的催化作用;使用极性较强的溶剂DMSO及在较高的温度(80 ℃)下反应,氯甲基转变为氨甲基的效率高;Schiff碱型螯合树脂SACPS对Cu2+离子具有良好的螯合能力。  相似文献   

12.
陈英军  高保娇  田鹏  马云霞 《化学学报》2011,69(11):1337-1346
采用Kornblum氧化反应, 先将氯甲基交联聚苯乙烯(CMCPS)的氯甲基氧化为醛基, 制得醛基(AL)化改性微球ALCPS, 然后使改性微球ALCPS与溶液中的苯甲醛(或取代的苯甲醛)、吡咯之间发生固-液相之间的Adler反应, 成功地实现了卟啉在交联聚苯乙烯微球表面的同步合成与固载, 制得了固载有苯基卟啉(PP) 、对氯苯基卟啉(CPP)、对硝基苯基卟啉(NPP)的功能微球, 最后使功能微球与钴盐发生配合反应, 制备了固载有三种钴卟啉的固体催化剂. 研究重点有两方面: (1)考察主要因素对卟啉同步合成与固载过程的影响|(2)考察固载化钴卟啉在催化分子氧氧化环己烷羟基化过程中的催化特性. 实验结果表明, 以醛基化改性微球ALCPS与溶液中的吡咯及小分子苯甲醛(或取代的苯甲醛)为共反应物, 通过固-液之间的Adler反应, 可以顺利地实现卟啉在微球ALCPS表面的同步合成与固载, 这是制备固载化卟啉的新途径|苯甲醛的取代基结构、催化剂的酸性与溶剂的性质对卟啉的同步合成与固载都有较大的影响|所制备的固体催化剂对分子氧氧化环己烷羟基化的反应, 具有很高的催化活性(环己烷最高转化率约为40%)与选择性(环己醇的选择性在90%以上), 这是由固体催化剂特殊的化学结构所决定的.  相似文献   

13.
制备氯甲基化聚苯乙烯交联微球的新方法   总被引:2,自引:0,他引:2  
使用Lewis酸催化剂, 用自制的氯甲基化试剂1,4-二氯甲氧基丁烷(BCMB), 在室温下对聚苯乙烯交联微球(白球)进行氯甲基化反应, 制得了氯含量接近17%的氯甲基化聚苯乙烯交联微球(氯球); 通过红外光谱法与佛尔哈德分析法表征了产物的化学结构与组成; 考察了各种因素对氯甲基化反应过程的影响规律. 结果表明, 各种因素对白球氯甲基化过程的影响表现在两个方面: (1) 影响白球的氯甲基化程度; (2) 抑制或促进分子链之间通过Friedel-Crafts反应进一步交联, 影响微球的强度.  相似文献   

14.
余依玲  高保娇  李艳飞 《催化学报》2013,34(9):1776-1786
以甲基丙烯酸缩水甘油酯(GMA)为单体, 以乙二醇二甲基丙烯酸酯(EGDMA)为交联剂, 采用悬浮聚合法制得交联聚甲基丙烯酸缩水甘油酯(CPGMA)微球, 然后以4-羟基-2,2,6,6-四甲基哌啶氮氧自由基(4-OH-TEMPO)为试剂, 使CPGMA微球表面的环氧基团发生开环反应, 从而制得了TEMPO固载化微球TEMPO/CPGMA, 考察了制备条件对固载化反应的影响, 并采用多种方法对微球TEMPO/CPGMA进行了表征. 将微球TEMPO/CPGMA与CuCl组成共催化体系, 用于分子氧氧化苯甲醇, 考察了反应条件对催化体系性能的影响. 结果表明, 以含环氧基团的聚合物微球CPGMA为载体, 通过开环反应, 可成功地实现TEMPO的固载化, 开环反应属SN2亲核取代反应, 适宜采用溶剂N,N''-二甲基甲酰胺和反应温度85℃. 非均相催化剂TEMPO/CPGMA与助催化剂CuCl构成共催化体系, 在室温、常压O2条件下可高效地将苯甲醇氧化为苯甲醛, 产物选择性和产率分别为100%和90%. 主催化剂TEMPO与助催化剂CuCl适宜的摩尔比为1:1.2; 主催化剂适宜用量为0.90 g. 此外, TEMPO/CPGMA固体催化剂具有良好的循环使用性能.  相似文献   

15.
通过分子设计的构思,仅通过两步大分子反应,便实现了N-羟基邻苯二甲酰亚胺(NHPI)在交联聚苯乙烯(CPS)微球表面的同步合成与固载,并制得了非均相催化剂微球CPS-NHPI。以氯化偏苯三酸酐(TMAC)为试剂、Lewis酸为催化剂,通过Friedel-Crafts酰基化反应,先将邻苯二甲酸酐(PA)基团键合在CPS微球表面,得到改性微球CPS-PA;再与盐酸羟胺进行酰亚胺反应,制备出固载有NHPI基团的非均相催化剂微球CPS-NHPI。重点研究了CPS微球表面发生Friedel-Crafts酰基化反应的影响因素。采用红外光谱(FT-IR)及扫描电子显微镜(SEM)等对微球CPS-NHPI进行表征,将微球CPS-NHPI分别用于分子氧氧化乙苯及环己烷两种烃类物质的氧化过程,初步考察了该微球的催化活性。研究结果表明,对于微球CPS与TMAC之间的FriedelCrafts酰基化反应,适宜的溶剂为氯仿与N,N-二甲基乙酰胺(DMAC)混合溶剂(氯仿与DMAC的体积比为7∶3),适宜的Lewis酸催化剂为SnCl4。初步探索实验表明,催化剂微球CPS-NHPI与Co(OAc)2所构成的共催化体系,在分子氧氧化乙苯及环己烷的催化氧化过程中,都表现出了良好的催化活性,温和条件下,反应35h时乙苯氧化为苯乙酮的转化率可达37%,反应30h时环己烷氧化为环己酮的转化率可达21%。  相似文献   

16.
在交联聚苯乙烯微球表面实现苯基卟啉的同步合成与固载   总被引:2,自引:0,他引:2  
以键合有对羟基苯甲醛(HBA)的交联聚苯乙烯(CPS)微球HBA-CPS、苯甲醛和吡咯为反应物, 采用Adler方法, 实现了苯基卟啉(PP)在CPS表面的同步合成与固载, 制得了固载有苯基卟啉的微球PP-CPS. 研究了卟啉同步合成与固载过程的影响因素, 同时进行了微球PP-CPS与钴盐的配合反应, 制备了固载有钴卟啉(CoP)的功能微球CoP-CPS, 初步考察了其对分子氧氧化乙苯的催化活性. 实验结果表明, 在苯基卟啉同步合成与固载的反应过程中, 催化剂的酸性与溶剂的极性是两个主要的影响因素, 使用强极性溶剂与pKa在2.8~3.4范围的酸, 微球PP-CPS表面的苯基卟啉固载量高. 微球CoP-CPS对分子氧氧化乙苯的反应具有明显的催化活性.  相似文献   

17.
采用氯甲基化试剂1,4-二氯甲氧基丁烷对交联聚苯乙烯(CPS)微球实施了氯甲基化反应,然后使5-氨基水杨酸(ASA)与氯甲基化交联聚苯乙烯微球表面的苄氯基团发生亲核取代反应,制得了氨基水杨酸-交联聚苯乙烯(ASA-CPS)螯合树脂.考察了主要反应条件对取代反应的影响,初步试验了ASA-CPS对金属离子的螯合性能.结果表明:ASA-CPS对Fe(Ⅲ)离子具有很强的螯合能力,吸附容量达3.77 mmol/g.  相似文献   

18.
手性席夫碱-铜(Ⅱ)与-钒氧(Ⅱ)配合物的合成及其在不对称氧化反应中的应用;席夫碱-钒氧配合物;席夫碱-铜配合物;不对称氧化偶合;联萘酚;氨基酸;β-萘酚  相似文献   

19.
以交联聚苯乙烯微球(CPS)为基质载体, 采用同步合成与固载的方法, 简捷地制得了固载化阳离子苯基卟啉, 继而通过与钴盐的配合反应, 制备了固载化阳离子钴卟啉. 在此基础上, 以Keggin 型杂多酸磷钨酸(HPW)及磷钼酸(HPMo)为试剂, 凭借阳离子钴卟啉(CoP)与杂多阴离子之间的静电相互作用, 制备与表征了固载化的由阳离子钴卟啉与杂多阴离子复合而成的固体催化剂CoPPW-CPS和CoPPMo-CPS. 将两种复合催化剂用于分子氧氧化乙苯的氧化反应, 考察研究了催化特性. 结果表明: 在分子氧氧化乙苯的氧化反应中, 复合催化剂具有很高的催化活性, 可使乙苯高选择性地转化为苯乙酮, 反应12 h, 苯乙酮的产率达30.1%; 复合催化剂的催化活性比单纯的固载化钴卟啉高75%; CoPPW-CPS的催化活性高于CoPPMo-CPS. 在复合催化剂结构组分中, 固载化的杂多阴离子并无催化活性, 起催化作用的组分是钴卟啉; 但是, 杂多阴离子可有效保护钴卟啉, 使其免于被氧化失活, 从而使其保持稳定的高催化活性. 复合催化剂具有最适宜的投加量, 过量催化剂的加入, 会抑制钴卟啉的催化活性. 复合催化剂还具有良好的循环使用性能.  相似文献   

20.
分散聚合法制备单分散交联聚苯乙烯微球   总被引:5,自引:0,他引:5  
以苯乙烯为单体、二乙烯基苯为交联剂,通过优化反应条件,制备了平均粒径为3.28~9.04 μm的单分散聚苯乙烯微球和平均粒径为6.60 μm的单分散交联聚苯乙烯微球.探讨了单体浓度、引发剂含量、分散稳定剂用量对微球粒径和分散性的影响.热稳定性分析表明:交联聚苯乙烯微球耐热性明显优于线性聚苯乙烯.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号