首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(methyl methacrylate) (PMMA) modified titanium and zirconium n-butoxide–ethyl acetoacetate (EAA) complex [M5-Ti(OBun)2(EAA)2 and M5-Zr(OBun)2(EAA)2] were obtained from trialkoxysilane-functional PMMA and EAA modified titanium and zirconium alkoxide via the sol–gel method. Infrared (IR), 13C nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA) were used to analyze the structures and properties of the hybrids with various proportions of metal oxide species. The effect of the complex of metal oxides and EAA ligands on structure and thermo-oxidative degradation of the M5-Ti(OBun)2(EAA)2 and M5-Zr(OBun)2(EAA)2 hybrids were investigated in this study. The 1H spin–diffusion path length of the hybrids was in a nanometer scale as estimated from the spin–lattice relaxation time in a rotating frame (TH). The apparent activation energies (Ea), evaluated by van Krevelen’s method, for random scission of PMMA segments in hybrids decreased with increasing metal oxide content.  相似文献   

2.
The epoxidation of cyclohexene with hydrogen peroxide in a biphase medium (H2O/CHCl3) was carried out with the reaction-controlled phase transfer catalyst composed of quaternary ammonium heteropolyoxotungstates [π-C5H5N(CH2)15CH3]3[PW4O16]. A conversion of about 90% and a selectivity of over 90% were obtained for epoxidation of cyclohexene on the catalyst. The fresh catalyst, the catalyst under reaction conditions and the used catalysts were characterized by FT-IR, Raman and 31P NMR spectroscopy. It appears that the insoluble catalyst could degrade into smaller species, [(PO4){WO(O2)2}4]3−, [(PO4){WO(O2)2}2{WO(O2)2(H2O)}]3−, and [(PO3(OH)){WO(O2)2}2]2− after the reaction with hydrogen peroxide and becomes soluble in the CHCl3 solvent. The active oxygen in the [W2O2(O2)4] structure unit of these soluble species reacts with olefins to form the epoxides and consequently the corresponding W---Ob---W (corner-sharing) and W---Oc---W (edge-sharing) bonds are formed. The peroxo group [W2O2(O2)4] can be regenerated when the W---Ob---W and W---Oc---W bonds react with hydrogen peroxide again. These soluble species lose active oxygen and then polymerize into larger compounds with the W---Ob---W and W---Oc---W bonds and then precipitate from the reaction solution after the hydrogen peroxide is consumed up. Part of the used catalyst seems to form more stable compounds with Keggin structure under the reaction conditions.  相似文献   

3.
The H2O2-based epoxidation of bridged cyclic alkenes in a monophasic system containing low concentrations (<2 mM) of [Bu4nN]4[Pr2iNH3]2H[P{Ti(O2)}2W10O38]·H2O (1) (with two η2-peroxotitanium sites in the anion) has been studied in search of the catalytically active species involved. 31P NMR spectra of 1, measured under a variety of conditions, revealed that the active species was not hydroperoxotitanium complex [P{Ti(OOH)}2W10O38]7−or [P{Ti(OOH)}Ti(O2)W10O38]7−. The reaction pathways for the alkene epoxidation are discussed to understand the kinetics (especially the initial [H2O2] dependence). It was concluded that the net catalytic reaction for the epoxidation occurred through the two-electron oxidation at the hydroperoxotitanium site in the catalyst.  相似文献   

4.
The epoxidation of cyclopentene with hydrogen peroxide catalyzed by 12-heteropolyacids of molybdenum and tungsten (H3PMo12−nWnO40, n = 1–11), 12-tungstophosphoric acid and 12-molybdophosphoric acid combined with cetylpyridinium bromide as a phase transfer reagent was carried out in acetonitrile. Among 13 heteropolyacids investigated, catalyst of H3PMo6W6O40 showed the highest activity, giving a conversion of 60% and a selectivity of 95% in the epoxidation of cyclopentene. The fresh catalysts and the catalysts under reaction condition were characterized by UV–vis, FT-IR and 31P NMR spectroscopy, which has revealed that all of the molybdotungstophosphoric acids were degraded in the presence of hydrogen peroxide to form a considerable amount of phosphorus-containing species. The active species resulted from H3PMo6W6O40 are new kinds of phosphorus-containing species, which is different from {PO4[WO(O2)2]4}3−.  相似文献   

5.
The spectrum of CD2HF was measured by high-resolution interferometric Fourier-transform IR (FTIR) spectroscopy (apodised instrumental band with:0.004 cm−1 fwhm) between 800 and 1200 cm−1 covering the four lowest fundamentals. A complete rotational analysis using a semi-automatic assignment procedure yields accurate band centres (ν9: 912.2028 cm−1, ν6:964.4994 cm−1, ν5: 1050.5104 cm−1, ν4: 1093.8632 cm−1) and a complete set of first-order Coriolis coupling constants. The most important couplings occur between ν9 and ν6a= 1.069 cm−1, ξc= −0.3535 cm−1) and between ν5 and ν4b= −0.80606 cm−1). The analysis was guided by and compared with results from our ab initio calculations for Coriolis constants and transition moments using CADPAC at TZP/MP2 level.  相似文献   

6.
Alkylidene complexes (Me3SiCH2)3Ta(PMe3)=CHSiMe3 (1) and Me3SiCH2Ta(PMe3)2(=CHSiMe3)2 (3a) were found to react with phenylsilanes H2SiR′Ph (R′=Me, Ph) and (PhSiH2)2CH2 to give disilyl-substituted alkylidenes (Me3SiCH2)3Ta=C(SiMe3)(SiHR′Ph) (2) and novel metallasilacyclobutadiene and metalladisilacyclohexadiene complexes. Silyl-substituted alkylidene complex (ButCH2)2W(=O)[=C(But)(SiPh2But)] (5a) was prepared from the reaction of O2 with an equilibrium mixture (ButCH2)W(=CHBut)2(SiPh2But) (4b) (ButCH2)2W(CBut)(SiPh2But) (4a). Our recent studies of the preparation of these complexes and mechanistic pathways in the formation of these silyl-substituted alkylidene complexes are summarized.  相似文献   

7.
The generality of a two-electron reduction process involving an mechanism has been established for M3(CO)12 and M3(CO)12n(PPh3)n (M = Ru, Os) clusters in all solvents. Detailed coulometric and spectral studies in CH2Cl2 provide strong evidence for the formation of an ‘opened’ M3(CO)122− species the triangulo radical anions M3(CO)12−· having a half-life of < 10−6 s in CH2Cl2. However, the electrochemical response is sensitive to the presence of water and is concentration dependent. An electrochemical response for “opened” M3(CO)122− is only detected at low concentrations < 5 × 10−4 mol dm−3 and under drybox conditions. The electroactive species ground at higher concentrations and in the presence of water M3(CO)112− and M6(CO)182− were confirmed by a study of the electrochemistry of these anions in CH2Cl2; HM3(CO)11 is not a product. The couple [M6(CO)18]−/2− is chemically reversible under certain conditions but oxidation of HM3(CO)11 is chemically irreversible. Different electrochemical behaviour for Ru3(CO)12 is found when [PPN][X] (X = OAc, Cl) salts are supporting electrolytes. In these solutions formation of the ultimate electroactive species [μ-C(O)XRu3(CO)10] at the electrode is stopped under CO or at low temperatures but Ru3(CO)12−· is still trapped by reversible attack by X presumably as [η1-C(O)XRu3(CO)11]. It is shown that electrode-initiated electron catalysed substitution of M3(CO)12 only takes place on the electrochemical timescale when M = Ru, but it is slow, inefficient and non-selective, whereas BPK-initiated nucleophilic substitution of Ru3(CO)12 is only specific and fast in ether solvents particulary THF. Metal---metal bond cleavage is the most important influence on the rate and specificity of catalytic substitution by electron or [PPN]-initiation. The redox chemistry of M3(CO)12 clusters (M = Fe, Ru, Os) is a consequence of the relative rates of metal---metal bond dissociation, metal-metal bond strength and ligand dissociation and in many aspects resembles their photochemistry.  相似文献   

8.
The synthesis and reactivity of {(η5-C5H4SiMe3)2Ti(CCSiMe3)2} MCl2 (M = Fe: 3a; M = Co: 3b; M = Ni: 3c) is described. The complexes 3 are accessible by the reaction of (η5-C5H4SiMe3) 2Ti(CSiMe3)2 (1) with equimolar amounts of MCl2 (2) (M = Fe, Co, Ni). 3a reacts with the organic chelat ligands 2,2′-dipyridyl (dipy) (4a) or 1,10-phenanthroline (phen) (4b) in THF at 25°C to afford in quantitative yields (η5-C5H4SiMe3)2Ti(CSiMe3)2 (1) and [Fe(dipy)2]Cl2 (5a) or [Fe(phen)2]Cl2 (5b). 1/n[CuIHal]n (6) or 1/n[AgIHal]n (7) (Hal = Cl, Br) react with {(η5 -C5H4SiMe3)2Ti(CCSiMe3)2}FeCl2 (3a), by replacement of the FeCl2 building block in 3a, to yield the compounds {(η5-C5H4SiMe3)2Ti(C CSiMe3)2}CuIHal (8) or {(η5-C5H4SiMe3)2Ti(CSiMe3)2}AgIHal (9) (Hal = Cl, Br), respectively. In 8 and 9 each of the two Me3SiCC-units is η2-coordinated to monomeric CuI Hal or AgIHal moieties. Compounds 8 and 9 can also be synthesized by the reaction of (η5-C5H4SiMe3)2 Ti(CSiMe3)2 (1) with 1/n[CuIHal]n (6) or 1/n [AgIHal]n (7) in excellent yields. All new compounds have been characterized by analytical and spectroscopic data (IR, 1H-NMR, MS). The magnetic moments of compounds 3 were measured.  相似文献   

9.
A series of novel heterobimetallic crown ether-like polyoxadiphosphaplatinaferrocenophanes cis-[1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2]PtCl2 (n=1–3) (4a–c) was synthesized in good yield by cyclization of the bis(phosphine) ligands 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2 (n=1–3) (3a–c) and (PhCN)2PtCl2 under high dilution conditions in CH2Cl2. The bisphosphines 3a–c are obtained by reaction of the corresponding diols 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2OH)2 (n=1–3) (1a–c) with: (i) CH3SO2Cl in CH2Cl2 and (ii) LiPPh2 in THF. Although the X-ray crystal structure of 4a shows that the cavity is large enough for the encapsulation of small metal cations, inclusion experiments of 4a–c with Group 1 cations, and Mg2+, or NH4+ in solution applying NMR titration and cyclovoltammetric methods reveal no evidence for the formation of host–guest complexes for 4a,b. In the case of 4c only the addition of Na+ or K+ leads to an insignificant effect.  相似文献   

10.
The reactions of BrMn(CO)5 with the non-chelating stereochemically rigid bidentate ligands (L-L) 1,3-, and 1,4-diisocyanobenzene, 4,4′-diisocyanobiphenyl, and 4,4′-diisocyanodiphenylmethane afford well characterized complexes of the types BrMn(CO)4(L-L), BrMn(CO)3(L-L)2, and [BrMn(CO)4]2(L-L). Similar reactions with [RC5H4Mn(CO)2NO]+PF6 gave mixtures of oligomers of the type [(RC5H4MnNO)n(L-L)n+1]n+[PF6]n.  相似文献   

11.
The title complex Mn2(CO)6(μ-H){μ-S(SC3H5)C=C(PPr3i)S} was synthesized by allyation of the homobinuclear anion [Mn2(CO)6(μ-H){μ-S(SC3H5)C=C(PPr3i)S}]−1, and characterized by elemental analysis, IR, 1H NMR and 31P NMR spectra. The molecular structure shows that it contains a novel fairly planar ligand S(S)C=C(PPr3i)S, and the two Mn(CO)3 fragments are symmetrically placed at both sides of the plane of the ligand.  相似文献   

12.
Novel anionic dinuclear mixed-ligand peroxo complexes of the type [(UO2)2(O2)3L(H2O)2]3− (L = Histidinate, aspartate, salicylate, Imidazolate and glutamate) have been synthesized from the interaction of uranyl ion (UO22+) with peroxide (O22−) in the presence of the respective coligand (L) at pH 9–10. The sparingly soluble complexes were characterized by elemental analyses, FT-IR, laser Raman (LR) and UV-vis spectroscopy and solution electrical conductance measurements. Based on these studies, a double bridged dinuclear structure involving one peroxo and the mixed ligand L (via-COO) has been tentatively proposed. Infra-red coupled with LR spectra evidenced structurally different metal bound peroxides (ν2 and σ:σ). An aqueous solution of the salicylate and aspartate complexes have been shown to convert triphenylphosphine (PPh3), cyclohexene, styrene and SO2 to the corresponding OPPh3, 1,2 cyclohexanediol, phenylethyleneglycol and SO42−, respectively.  相似文献   

13.
A performance evaluation of Density Functional Tight Binding (DFTB) in the two-layer ONIOM method is presented in an effort to estimate DFTB effectiveness as an inexpensive low level quantum mechanical layer. Ground state geometries, geometry error, S-values and energy error for: (H2O)x(MeOH)y, [(η5-C5MenH5−n)2Ti]22, η22-N2), n = 4, and complexes of Cu+ with tyrosine, were compared to target calculations at B3LYP level of theory for all three of the systems and second order Moller-Plesset (MP2) target level of theory for the first two systems. The calculated root-mean-square errors (RMS) of the ONIOM optimized geometries relative to the target are found to be small. The DFTB level of theory was unable to reproduce the target geometry structure for one of the isomers of tyrosine–Cu+ complex, while the ONIOM combinations were able to reproduce all target structures. The absolute value of the geometry error was determined to be smaller then the corresponding energy error except for the (H2O)x(MeOH)y system at the ONIOM(MP2/6-31G(d,p):DFTB) level of theory. The S-values were relatively small and close in value contributing to relatively small energy errors. Both method combinations ONIOM(MP2:DFTB) and ONIOM(DFT:DFTB) show similar performance compared to the corresponding target level of theory. The results also suggest that it is safe to use ONIOM(DFT:DFTB) for investigations of [(η5-C5MenH5−n)2Ti]22, η22-N2) complexes.  相似文献   

14.
Ab initio (HF/3-21G*), DFT (B3LYP with basis sets 6-31G*, 6-311+G* and 6-311+G(2d)) and, in some cases, MP2/6-31G* calculations, were done on cyclic dimers, trimers, etc. and on acyclic oligomers (with OH and H on the ends) of sulfur monoxide and sulfur dioxide. The four cyclic (SO)n molecules were (S–O)2 (1,3,2,4-dioxadithietane, 1a), (S–O)3 (1,3,5,2,4,6-trioxatrithiane, 2a), (S(=O))4 (tetrathietane 1,2,3,4-tetraoxide, 1b), and (S(=O))6 (hexathiane 1,2,3,4,5,6-hexaoxide, 2b). The four cyclic (SO2)n molecules were the dioxide of 1a (1,3,2,4-dioxadithietane 2,4-dioxide, 1c), the trioxide of 2a (1,3,5,2,4,6-trioxatrithiane 2,4,6-trioxide, 2c), the tetraoxide of 1b (tetrathietane 1,1,2,2,3,3,4,4-octaoxide, 1d) and the hexaoxide of 2b (hexathiane 1,1,2,2,3,3,4,4,5,5,6,6-dodecaoxide, 2d). The 16 acyclic molecules (oxides of disulfane, trisulfane, etc. and oxides of oxadisulfane, dioxatrisulfane, etc.) were (–S–O–)n, (–S(=O)–)n, (–S(=O)O–)n, and (–S(=O)2–)n, with n from 2 to 5 and HO, H at the ends. Most of these species are relative minima on the B3LYP/6-31G* potential energy surface. In energy content, the SO dimer, etc. lie below, and the SO2 dimer, etc. above, their SOx components, at all the electron-correlated levels.  相似文献   

15.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

16.
The interaction between Mo2(O2CCH3)4, Me3SiI and I2 in THF resulted in oxygen abstraction from the solvent and formation of [Mo2(μ-O)(μ-I)(μ-O2CCH3) I2(THF)4]+[MoOI4(THF)] and I---(CH2)4---I. The molybdenum complex has been characterized by X-ray diffractometry. Crystal data: triclinic, space group P , a = 13.827(3) Å; b = 15.803(7) Å; c = 9.950(3) Å; = 93.34(4)°; β = 102.40(2)°; γ = 90.09(2)°; V = 2120(2) Å3; Z = 2; dcalc = 2.559 g cm−3; R = 0.0476 (Rw = 0.0613) for 370 parameters and 3938 data with F02> 3σ(F02). The metal-metal distance in the cation is 2.527(2) Å and indicates a strong interaction. The magnetic behavior is consistent with the assignment of one unpaired electron to the Mo27+ core of the cation and one to the d1 Mo(V) center of the anion. The interaction between Mo(CO)6 and I2 in THF also results in the formation of 1,4-diiodobutane.  相似文献   

17.
The electron donating water soluble phosphines, P{(CH2)nC6H4-p-SO3Na}3,n = 1, 2, 3 and 6, react rapidly with Co2(CO)8 under two phase reaction conditions to yield the disproportionation products, [Co(CO)3(P{(CH2)nC6H4-p-SO3Na3}2] [Co(CO)4]. Selective precipitation yields the formally zwitterionic complex anions as the sodium salt, [Co(CO)3(P{(CH2)nC6H4-p-SO3} 3)2]5−. The anions can be used as precursors to water soluble cobalt hydroformylation catalysts under two phase and supported aqueous phase conditions. The tendency to form alcohol products is low with these complexes. The behavior of the catalysts is consistent with an active species that remains water soluble during the reaction and is not leached into the nonaqueous phase.  相似文献   

18.
Rui Yang  Yu Gong  Mingfei Zhou   《Chemical physics》2007,340(1-3):134-140
The reaction products of palladium atoms with molecular oxygen in solid argon have been investigated using matrix isolation infrared absorption spectroscopy and quantum chemical calculations. In addition to the previously reported mononuclear palladium–dioxygen complexes: Pd(η2–O2) and Pd(η2–O2)2, dinuclear palladium–dioxygen complexes: Pd22–O2) and Pd22–O2)2 were formed under visible light irradiation and were identified on the basis of isotopic substitution and theoretical calculations. In addition, experiments doped with xenon in argon coupled with theoretical calculations suggest that the Pd(η2–O2), Pd22–O2) and Pd22–O2)2 complexes are coordinated by two argon or xenon atoms in solid argon matrix, and therefore, should be regarded as the Pd(η2–O2)(Ng)2, Pd22–O2)(Ng)2 and Pd22–O2)2(Ng)2 (NgAr or Xe) complexes isolated in solid argon.  相似文献   

19.
To examine the steric effects on the stability of Ln(0) π-arene compounds, molecular mechanics (MMP2) calculations are performed on Gd(η-C6H6)2 and Ln(η-But3C6H3)2 (where Ln is Gd, Yb and Y ). The small potential-well depth ( ≈ 2 kcal mol−1) and the large Gd-C equilibrium distance ( > 3.3 Å) explains the instability of Gd(η-C6H6)2, while the difference in the stability between Gd(η-But3C6H3)2 and Yb(η-But3C6H3)2 can be attributed to the difference in the van der Waalsradii of the two metals and the more contracted 5d orbitals on the Yb atom.  相似文献   

20.
合成并表征了含RCOO-基团的单核(Ni1~Ni2)及双核(Ni3)镍配合物[(2,6-R2-C6H3)—N=C(H)—(3-Ph-5-PhCOO-2-O-C6H2)-κ2-N,O]Ni(CH3)(pyridine)](R=iPr;3,5-tBu2C6H3),并用于催化乙烯均聚和共聚反应。 作为单组分催化剂,这些配合物可以有效地催化乙烯聚合得到中等相对分子质量的支化聚乙烯(PE)。 供电性的PhCOO—基团促进了催化剂Ni1的引发,从而在低温下比Ni0活性更高。 引入大位阻的2,6-(3,5-二叔丁基苯基)苯胺基团,催化剂Ni2在5×105 Pa下的活性高达1.8×106 g PE mol-1·Ni-1·h-1,是活性最高的水杨醛亚胺中性镍催化剂之一。 与相应的单核催化剂相比,双核催化剂Ni3对三苯基膦具有更好的耐受性。 这些催化剂可催化乙烯与1,5-己二烯、1,7-辛二烯、6-溴-1-己烯或10-十一烯酸甲酯的共聚合,制备功能化聚乙烯。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号