首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王昌安  王为 《化学学报》2015,73(6):498-529
有机多孔材料POPs (Porous Organic Polymers)成为近年来的研究前沿之一. 有机多孔材料包括非晶型(如CMP, HCP, PIM等)和晶型(比如COFs等)有机多孔材料两类, 它们具有优异的孔性质、较大的比表面积、稳定性好、重量轻以及易于功能化等诸多优点, 被广泛应用于气体存储分离、传感、有机光电和多相催化等重要领域. 这里对有机多孔材料在多相催化领域中的应用做一综述. 目前, 有机多孔催化领域的研究工作主要有三类: 一类是通过“自下而上”策略将金属-配体类催化剂嵌入有机多孔骨架来构建多相催化剂; 另一类是将有机多孔材料作为载体, 通过后修饰方式负载金属纳米颗粒构建多相催化剂; 最后一类是通过“自下而上”策略将不含金属的有机小分子催化剂嵌入材料骨架来构建多孔有机催化剂. 受益于其结构的优越性, 有机多孔材料在多相催化中表现出优异的催化性能. 借鉴于均相催化的发展, 具有催化活性的有机多孔材料在多相催化领域中的应用也将会有更大的发展空间.  相似文献   

2.
金属有机框架化合物(MOF),又称多孔性配位聚合物,是有机配体与金属离子自组装而成的一类新型有机-无机杂化多孔材料,是纳米材料的重要组成部分。与其他多孔材料相比,MOFs具有较大的比表面积、高的孔隙率以及结构和性质可调等特性,使其在非均相催化领域具有良好的应用前景。本文首先对MOFs催化的背景进行简述,然后对近年来报道的MOFs用于有机分子催化转化反应的进展进行了综述及展望,以期为MOFs催化有机反应的设计和开发提供参考。  相似文献   

3.
白林盛  洪鹏  应安国 《有机化学》2023,(4):1241-1270
聚丙烯腈纤维(PANF)具有出色的机械强度、耐化学性和良好的热稳定性,而且易于进行改性.在聚丙烯腈纺丝原液中加入添加剂或功能单体,或对PANF进行热处理等方法可以实现物理改性.而PANF的化学表面改性包括胺化、酰胺化、氧化、还原、交联、水解、酸处理和化学枝接等方法,表面改性给PANF带来许多特殊官能团,使其可以进一步被用作有机物、有机配体、酶以及过渡金属的载体.通过负载催化活性位点从而得到具有催化活性的功能化PANF.近年功能化PANF作为非均相催化剂被广泛应用于有机合成领域,综述了功能化PANF催化剂在有机反应中的研究成果与进展,包括缩合反应、偶联反应、加成反应、氧化还原反应及多组分一锅法反应等.介绍了纤维催化剂的合成及结构,讨论了催化性能,分析了可能的催化机理,为开发更优的功能化PANF做铺垫.  相似文献   

4.
刘丽丽张鑫  徐春明 《化学进展》2010,22(11):2089-2098
近年来金属有机骨架(MOF)以其独特的结构特点(高比表面积、织构性质可调以及暴露的金属离子可以100%利用)引起了催化学者的极大重视,本文评述了与传统催化材料(如分子筛)相比,金属有机骨架作为催化材料的优点与不足,针对多数MOF中处于节点的金属离子被配体配位饱和而不具备催化活性这一弊端,本文基于对这一问题的最新研究进展总结了在MOF上创立催化活性位的4种方法:即前合成法、后合成共价修饰法、浸渍法以及沉淀法,讨论了这4种方法各自的优缺点,并详细介绍了这些方法在催化反应中的探索和应用,指出了MOF在催化领域需要重视的问题和未来的研究方向,以期对MOF在催化领域的研究和开发提供参考。  相似文献   

5.
合成了一种多级孔芳香骨架材料(PAF-70); 使用由氨基修饰过的单体, 应用该合成策略得到了同样具有窄分布介孔的含有氨基活性位点的PAF材料, 并通过硫脲单体与其氨基活性位点的反应, 将硫脲基团引入PAF-70材料中, 获得了含有硫脲催化位点的材料(PAF-70-thiourea). 氮气吸附-脱附测试结果显示, PAF-70存在孔径分布较窄的介孔, 介孔孔径为3.8 nm, 与模拟计算值(约3.7 nm)吻合. 热重分析结果表明, PAF-70具有很高的热稳定性. PAF-70在大多数溶剂中可以稳定存在, 具有良好的化学稳定性. 将PAF-70-thiourea作为催化剂, 应用在N-溴代琥珀酰亚胺(NBS)氧化醇类的反应中, 其表现出较高的催化活性、 较高的稳定性和广泛的底物适用性. 与含有相同硫脲催化位点的金属有机框架(MOF)材料(IRMOF-3-thiourea)作为催化剂对比, 进一步证实PAFs材料非常适合作为催化有机反应的固载平台.  相似文献   

6.
黎林清  吕迎  李军  董晓丽  高爽 《化学进展》2012,24(5):747-756
本文分别从以骨架中的金属(金属簇)为催化中心的MOF材料、利用具有催化活性的刚性有机配合物构筑的MOF材料和MOF负载催化材料三个方面详细介绍了MOF作为催化剂在烯烃氧化反应中的应用情况,分析了其各自的优缺点。具有催化活性的刚性有机配合物构筑的MOF材料稳定性较好,能够引入具有光学活性的催化剂,可以作为不对称催化氧化催化剂使用,是未来的一个研究发展方向。  相似文献   

7.
近年来,大气中CO2的浓度不断增加,带来全球变暖等一系列严重后果,成为国际社会共同关注的环境问题.将CO2催化转化为高附加值化学品可有效降低其向大气中的排放,同时可实现其资源化利用,符合低碳社会的发展目标.目前,已有多种催化体系实现了CO2向不同化学品的转化.然而,由于CO2自身的热力学稳定性和动力学惰性,这些转化通常需要在苛刻的反应条件和较高能耗下进行.设计开发高效催化体系、实现温和条件下CO2的转化利用引起了工业界和学术界的广泛兴趣.金属有机骨架材料(MOFs)是一类由有机配体和金属中心通过配位键组装而成的有机-无机杂化材料,在很多方面展现出良好的应用性能.由于其结构的多样性、可设计性、高比表面积和多孔性等独特性质,MOFs在催化领域吸引了很多研究者的关注.其中,MOFs作为非均相催化剂在CO2热催化转化中表现出良好的应用前景,已实现多种CO2向高值化学品的转化路径.但这些催化体系也存在一些缺点,如有些MOFs材料在催化反应中稳定性差以及其微孔性对反应中的传质造成限制等.因此,设计稳定的MOFs和MOF-基材料并对其结构进行优化改性,从而在温和条件下实现高效的CO2转化具有重要意义.本文综述了提高MOFs在CO2热催化转化反应中性能的几种策略:(1)对MOFs结构中的配体进行设计,包括具有活性官能团的配体、活性配合物作为配体和引入混合配体设计多元MOF;(2)调节MOFs结构中的金属中心,设计混合金属中心和包含活性金属团簇的金属中心;(3)构筑多级孔MOFs;(4)设计MOF-基的复合材料,包括MOFs作为载体与金属纳米颗粒、活性配合物和聚合物构建复合材料;(5)利用MOFs作为前驱体制备MOF-基衍生物材料,重点阐述了如何增加MOFs作为非均相催化剂的催化活性位点以及在CO2转化反应中各位点之间的协同作用.此外,介绍了原位表征技术在MOF-基材料用于CO2固定和转化中的应用.最后,分析了MOF-基非均相催化材料在CO2热催化转化领域目前面临的问题和挑战,包括MOFs材料结构优化、催化机理研究和规模化制备等方面,并对未来的发展趋势进行了展望.  相似文献   

8.
加氢是现代化工产业中的一类主干反应,广泛应用于精细化学品、药物、食品、染料、功能聚合物及香料等制造产业中.高效催化剂的引入使得加氢反应能够在相对温和的条件下还原各类不饱和化合物.金属催化剂在加氢反应中活性高,所需的反应温度较低,适用性广,但是容易和S,N,As和P等元素结合而"中毒"失去反应活性.金属氧化物催化剂和金属硫化物催化剂具有一定的抗毒性,但活性相对较差,通常需要采用高温高压的反应条件,对催化剂本身和反应器的要求较为苛刻.传统催化剂在反应中具有一定的局限性,所以亟需开发新一代高效的加氢催化剂,在保证高活性和高选择性催化效果的同时,降低对能源的消耗和对环境的负面影响.金属有机骨架(MOFs)作为一种新型的多孔材料在过去二十年中受到相当大的关注,并在催化、气体存储和分离、传感器、发光材料和药物输送等众多领域的应用中表现出卓越的性能.利用MOF材料良好的相容性,将MOF和其它功能材料结合形成新的复合材料可以在更大程度上扩大MOF材料的应用领域.与传统的催化剂相比,MOF基材料具有优异的物理化学特性和结构可调性,通过合理的设计能够满足不同的催化加氢过程:(1)MOF基催化剂具有多样且特异性的活性位点.除了组成MOF材料的金属离子/簇和功能有机配体之外,MOF材料可通过封装其他活性物质或者被活性物质包裹等方式引入其他类型的催化位点,进一步扩大MOF基催化剂在不同催化加氢中的适应性.此外,不同的活性位点之间的协同作用又能特异性地促进反应的进行,对提高反应的选择性起到重要的作用.(2)活性位点的尺寸大小和空间分布可以被有效控制.这能影响到催化剂在催化反应过程中的活性和选择性,并且通过MOF材料的限域效应,同时能增强活性位点的稳定性和耐久性.(3)高比表面积能提高MOF基催化剂的催化活性.这种结构特性不仅可以增加MOF基催化剂的活性位点,而且能够吸附反应物和还原剂达到扩大其局部浓度的效果.(4)反应分子的扩散可通过调节MOF基催化剂的结构实现控制.通过调整MOF材料的孔窗口和通道的尺寸,能够改变反应物在催化剂内部的扩散途径,影响底物和活性位点的接触,能进一步影响反应的活性和选择性.本文总结了近几年来MOF基材料在不同的催化加氢反应中的应用,其中包括烯烃、炔烃、芳硝基化合物、肉桂醛、糠醛和苯等化合物的加氢反应.首先介绍了MOF基材料中不同类型的活性位点,除了MOF材料自身的金属离子/簇和功能有机配体外,MOF基复合材料中的金属纳米颗粒?金属硫化物?金属氧化物?均相催化剂等活性位点可以通过封装或包裹的方式引入.在不同加氢反应中,着重介绍了MOF基催化剂中不同类型活性位点的加氢过程中的催化方式、催化剂本身的结构优化及催化剂与反应底物之间的相互作用,以及这些因素之间的协同作用对反应活性和选择性的影响.最后,讨论了MOF基材料在加氢反应中应用存在的问题以及未来发展展望.  相似文献   

9.
共价有机框架材料在多相催化领域的研究进展(英文)   总被引:1,自引:0,他引:1  
胡慧  闫欠欠  格日乐  高艳安 《催化学报》2018,39(7):1167-1179
共价有机框架(COFs)材料是近年来在拓扑学基础上发展起来的一类新型有机多孔聚合物,是有机单体通过可逆共价键连接而形成的晶型多孔材料,具有拓扑结构"可设计"、比表面积大、结构规整、孔道均一、孔径可调节以及易于修饰和功能化等优点.与金属有机框架材料(MOFs)相比,由于COFs是以共价键连接形成空间网络结构,具有较好的热稳定性和化学稳定性,又被称为"有机分子筛".COFs的构筑单体为有机小分子,有机小分子来源广泛而且种类繁多,使得构筑单体多样化,便于通过构筑单体来调控目标材料的结构和功能.自2005年首次报道以来,COFs以其独特的结构和优越的性能,吸引了广大科研工作者的极大兴趣,对其结构设计、可控合成、结构解析以及功能探索成为了研究热点,在气体吸附与分离、光电材料等领域展现出了广阔的应用前景.特别是在催化领域,由于COFs材料的多孔性、敞开的孔道结构、良好的稳定性以及易于修饰的特点,采用COFs作为催化剂以及催化剂载体受到了人们普遍的关注.作为催化剂,COFs可分为本征型催化剂和负载型催化剂.本征型催化剂的设计方法是基于"自下而上"策略将催化活性中心嵌入材料骨架之中;负载型催化剂的设计方法是以COFs为载体,通过后修饰方式负载金属颗粒或离子来构建多相催化剂.本征型COFs催化剂是在分子水平上引入催化活性中心,具有活性位点均匀分散、数量可控的特点,而且COFs规整均一的孔道结构有利于底物的传质,也为择形催化提供了可能;负载型催化剂通过后修饰方式引入催化活性中心,由于COFs以共价键连接,催化剂稳定性较高.COFs载体具有较大的比表面积,使得催化活性位点分散性好,也有利于底物与催化活性位点的结合.本文综述了COFs作为多相催化剂在催化领域的发展状况,按照COFs引入催化活性位点的类别,如单催化位点、双催化位点以及负载的金属纳米粒子进行了细致的阐述,重点讨论了COFs催化剂的设计理念、制备方式、功能化策略、材料的稳定性、催化活性以及选择性等内容.此外,对COFs作为光催化剂以及电催化剂方面的研究也进行了详细的介绍.最后,我们讨论了COFs在未来催化领域所面临的问题及挑战,并展望了COFs在超分子催化以及酶催化等方面的应用前景.  相似文献   

10.
加氢是现代化工产业中的一类主干反应,广泛应用于精细化学品、药物、食品、染料、功能聚合物及香料等制造产业中.高效催化剂的引入使得加氢反应能够在相对温和的条件下还原各类不饱和化合物.金属催化剂在加氢反应中活性高,所需的反应温度较低,适用性广,但是容易和S,N,As和P等元素结合而"中毒"失去反应活性.金属氧化物催化剂和金属硫化物催化剂具有一定的抗毒性,但活性相对较差,通常需要采用高温高压的反应条件,对催化剂本身和反应器的要求较为苛刻.传统催化剂在反应中具有一定的局限性,所以亟需开发新一代高效的加氢催化剂,在保证高活性和高选择性催化效果的同时,降低对能源的消耗和对环境的负面影响.金属有机骨架(MOFs)作为一种新型的多孔材料在过去二十年中受到相当大的关注,并在催化、气体存储和分离、传感器、发光材料和药物输送等众多领域的应用中表现出卓越的性能.利用MOF材料良好的相容性,将MOF和其它功能材料结合形成新的复合材料可以在更大程度上扩大MOF材料的应用领域.与传统的催化剂相比,MOF基材料具有优异的物理化学特性和结构可调性,通过合理的设计能够满足不同的催化加氢过程:(1)MOF基催化剂具有多样且特异性的活性位点.除了组成MOF材料的金属离子/簇和功能有机配体之外,MOF材料可通过封装其他活性物质或者被活性物质包裹等方式引入其他类型的催化位点,进一步扩大MOF基催化剂在不同催化加氢中的适应性.此外,不同的活性位点之间的协同作用又能特异性地促进反应的进行,对提高反应的选择性起到重要的作用.(2)活性位点的尺寸大小和空间分布可以被有效控制.这能影响到催化剂在催化反应过程中的活性和选择性,并且通过MOF材料的限域效应,同时能增强活性位点的稳定性和耐久性.(3)高比表面积能提高MOF基催化剂的催化活性.这种结构特性不仅可以增加MOF基催化剂的活性位点,而且能够吸附反应物和还原剂达到扩大其局部浓度的效果.(4)反应分子的扩散可通过调节MOF基催化剂的结构实现控制.通过调整MOF材料的孔窗口和通道的尺寸,能够改变反应物在催化剂内部的扩散途径,影响底物和活性位点的接触,能进一步影响反应的活性和选择性.本文总结了近几年来MOF基材料在不同的催化加氢反应中的应用,其中包括烯烃、炔烃、芳硝基化合物、肉桂醛、糠醛和苯等化合物的加氢反应.首先介绍了MOF基材料中不同类型的活性位点,除了MOF材料自身的金属离子/簇和功能有机配体外,MOF基复合材料中的金属纳米颗粒?金属硫化物?金属氧化物?均相催化剂等活性位点可以通过封装或包裹的方式引入.在不同加氢反应中,着重介绍了MOF基催化剂中不同类型活性位点的加氢过程中的催化方式、催化剂本身的结构优化及催化剂与反应底物之间的相互作用,以及这些因素之间的协同作用对反应活性和选择性的影响.最后,讨论了MOF基材料在加氢反应中应用存在的问题以及未来发展展望.  相似文献   

11.
胡慧  闫欠欠  王明  于丽  潘伟  王宝山  高艳安 《催化学报》2018,39(9):1437-1444
共价有机框架(COFs)材料是在拓扑学基础上发展起来的一类新型有机晶体多孔聚合物.由于COFs材料具有较高的比表面积、良好的热稳定性和化学稳定性、可设计的孔结构以及容易修饰改性的特点,目前广泛用作催化剂或催化剂载体.COFs的构筑单体为有机小分子,其来源广泛且种类繁多,使得构筑单体多样化,便于通过构筑单体来调控目标材料的结构和功能.近年来对COFs的研究已经引起人们广泛关注.离子框架材料在气体分子的吸附与分离领域展示了良好性能,通过简单的离子交换过程,可以容易地将具有特定尺寸和功能的反离子引入到框架结构中来调控孔的尺寸大小,从而实现混合气体的有效分离.然而,在催化领域目前尚未见将具有特定催化功能的反离子基团引入到框架之中,研究离子框架材料的催化性能.本文设计合成了一种负电荷为骨架结构的离子型COFs材料.我们首先选取一种化学结构稳定的COF作为骨架前驱体,其中的单体具有可反应的活性基团酚羟基,然后通过与1,3-丙烷磺酸内酯进行开环反应,将烷基磺酸引入到孔中,经过弱碱处理后得到阴离子型COFs(I-COFs),然后通过简单的离子交换过程将具有催化活性的Mn2+以及[Mn(bpy)2]2+配位阳离子分别引入到COFs框架中,得到具有催化功能的新材料.我们考察了两种I-COFs对烯烃氧化制环氧化合物的催化性能,发现所得离子COFs对不同的反应底物均展示了较高的环氧化催化性能.结果证实了离子I-COF催化反应为多相催化,还表现出I-COFs催化剂具有较高的稳定性以及循环使用性能.我们认为,通过简单的离子交换过程,能够赋予I-COFs材料各种不同的功能,从而实现COFs在不同领域的应用.这为多孔材料的功能化设计提供了新的化学平台.  相似文献   

12.
金属-有机框架多孔化合物(MOF)由于其微孔结构的可设计性、可调节性和优越的吸附性能,近年来被广泛用于气体分离、储存、催化、药物传输等方面的研究.以往的研究主要集中在通过改变金属中心离子和功能化的配体,进而合成大量的MOF化合物并研究它们在H2,N2,CH4,CO2等气体吸附和分离方面的行为.然而通过合成一些具有开放金属位点的MOF,从而达到改变其吸附性能,或者通过MOF的后修饰改善其催化性能等方面的工作,则相对较少.本论文利用一个"T型"的配体,5-异烟酸酰胺间苯二甲酸(5-(isonicotinamido)isophthalicacid(H2INAIP)),与Zn(NO3)2.6H2O在溶剂热的条件下反应得到了一个二重穿插的三维配位多孔聚合物{[Zn(INAIP)(DMF)].0.5DMF.4H2O}n(1).晶体结构分析表明,这个Zn-MOF的中心离子配位数为5,而且具有一维的通道,配位的溶剂分子DMF伸向通道内侧.热重和变温粉末实验表明,除去溶剂分子后,活化的多孔化合物可以提供一些开放的金属位点,同时化合物骨架保持了较高的稳定性.气体吸附试验表明化合物1可以吸附N2,表现出Ⅰ型吸附脱附行为.  相似文献   

13.
甲烷作为重要的气态化石能源,广泛存在于天然气中.利用非均相催化剂将甲烷转化为液体燃料是天然气全面经济开发的有效策略之一.目前催化剂普遍存在催化速率较慢、效率不高及催化剂难回收的问题.作为较新出现的晶态多孔材料,金属有机框架(MOFs)已被证明在各种功能化纳米材料的设计和合成中是有前途的非均相催化剂或载体/前体.本文系统地综述了基于MOFs的非均相催化剂将甲烷转化为高附加值化学品的最新进展.重点主要放在催化剂设计、催化反应性和反应机理上.此外,讨论了MOFs催化剂在甲烷转化中的主要挑战和进一步的发展方向.  相似文献   

14.
离子液体(ILs)功能化的金属有机框架(MOFs)和共价有机框架(COFs)材料兼具离子液体和MOFs/COFs的优点,是一种极具潜力的复合催化材料。MOFs和COFs材料固定的孔结构及较大的比表面积为负载高分散催化中心提供了天然的物理空间;多孔结构促使催化剂与反应物充分接触;丰富的孔道有利于运输催化反应底物和产物,进而实现催化反应的高效进行。特别是离子液体片段的引入,可以作为催化活性中心的配体(稳定剂)或分散剂,同时能够有效改善MOFs和COFs材料孔道和活性中心周围的微环境。此外,还可以充分利用离子液体片段在适当的反应条件下转化为氮杂环卡宾配体的特点,在MOFs和COFs材料中引入氮杂环卡宾有机金属配合物。因此,我们对近几年来离子液体功能化的MOFs或COFs催化体系在CO2环加成、CO2还原、C-C偶联、羰基化以及其它有机转化反应中的研究应用进行简要综述。并对复合材料在催化领域的发展进行总结和展望。  相似文献   

15.
具有可控配位环境的高催化活性和选择性的稳定单金属位点催化剂的合成仍然具有挑战性. 本工作采用阳离子交换策略合成了两种具有不同配位结构的Cu单原子催化材料. 该策略主要依赖于硫化物的阴离子骨架和富含 N 的聚合物壳在高温退火过程中产生大量的S和N缺陷, 精确合成了富边缘S和N双修饰的单金属Cu位点催化材料. 在这两种材料, 一种Cu单原子具有硫(S)、氮(N)双配位, 一种Cu单原子只有单一的S配位. Cu中心原子的第一壳层配位数为4, Cu-S/N-C的结构为Cu-S1N3, Cu-S-C的结构为Cu-S4. 实验表明, S、N双修饰的Cu单原子材料在室温下催化硝基苯加氢过程中表现出较高活性. 反应20 min后, 在Cu-S/N-C催化下, 硝基苯加氢转化率达到100%, 循环使用5次后活性未见显著下降. 该发现为调节中心金属配位环境以提高单原子催化材料的性能提供了一种可行的方法.  相似文献   

16.
黄刚  陈玉贞  江海龙 《化学学报》2016,74(2):113-129
金属有机骨架(MOFs)材料是一种相对新型的多孔材料,由于其结构的多样性、可设计性、可剪裁性以及超高的比表面积,近年来吸引了广泛的研究兴趣,并在很多领域展现了潜在的应用前景.特别是在催化方面的应用更受到了强烈的关注.本文的前两部分主要以催化活性位点的来源进行分类,包括配位不饱和金属中心、功能性有机配体、化学修饰接入功能位点以及嵌入在MOFs孔内的金属配合物或金属纳米颗粒等,总结了近几年来MOFs及其复合材料在多相催化方向取得的一些进展.同时在后面两部分也简要地介绍了MOFs在光催化及以MOFs为模板构筑的多孔纳米材料在催化(特别是电催化)方面的一些应用.最后,对MOFs在催化方面的应用前景做了展望.  相似文献   

17.
张艳梅  戴田霖  张帆  张静  储刚  权春善 《催化学报》2016,(12):2106-2113
金属有机骨架(MOF)材料是由过渡金属离子与有机配体通过配位键连接构成的高度有序的超分子化合物.这类材料比表面积大,孔隙率高,热稳定性好,而且具有规整可调控的孔结构、易于功能化的骨架金属离子和有机配体,在多相催化领域具有潜在应用前景.将纳米尺寸的MOF材料等多孔材料作为催化剂,可以提高反应传质效率,从而提高催化反应活性,但纳米MOF催化剂的分离和回收困难.将磁性纳米粒子和MOF材料组装成核壳结构的磁性MOF材料,不仅可简化催化剂的分离回收,而且通过控制壳层材料的厚度可以实现催化剂的高活性和高选择性.我们曾将磁核Fe3O4纳米粒子交替放入含有一种MOF材料前体的DMF溶液中,采用层层组装法制备了磁性Fe3O4@UiO-66-NH2纳米复合材料.经过十步组装后的材料的透射电镜(TEM)结果证实为核壳结构.但未出现明显的UiO-66-NH2的X射线衍射(XRD)特征峰,说明壳层材料UiO-66-NH2的结晶度较低;同时由于其孔结构的破坏或堵塞,在反应中出现明显失活.本文进一步改进自组装方法制备了核壳结构的磁性Fe3O4@UiO-66-NH2纳米复合材料,用XRD、傅里叶变换红外光谱(FT-IR)、TEM、扫描电镜(SEM)和氮气吸附等方法对材料的组成和结构进行了表征,并考察了其在Knoevenagel缩合反应中的催化性能.结果表明,所制材料是以Fe3O4为核,以UiO-66-NH2为壳的核-壳结构材料.经三次组装后出现了一系列UiO-66-NH2的XRD特征峰,说明采用新方法制备的复合材料中壳层材料UiO-66-NH2结晶度高,晶体结构规整.N2吸附-脱附结果表明,材料具有较高的比表面积和孔容.该复合材料在Knoevenagel缩合反应中表现出与纳米UiO-66-NH2相当或更好的催化活性和选择性,而且因壳层材料的孔道限阈效应而对底物表现出尺寸选择性.由于材料结晶度和晶体结构规整度的提高,催化剂稳定性更好,通过简单磁性分离即可分离和回收催化剂,循环使用4次而未出现明显失活.相对于本课题组之前报道的Fe3O4@CuBTC-NH2,Fe3O4@IRMOF-3和Fe3O4@UiO-66-NH2材料,本文所制的Fe3O4@UiO-66-NH2是一类结构更加稳定的高效固体碱催化剂.  相似文献   

18.
任颜卫  陆家贤  江鸥  程晓飞  陈俊 《催化学报》2015,(11):1949-1956
稀土金属有机骨架(Ln-MOFs)是利用有机配体和稀土离子之间配位自组装形成的具有超分子多孔网络结构的类沸石材料,其优点是稳定性好,一般不溶于常规的有机和无机溶剂,并且孔径、孔形及孔表面性质可通过其构建分子的选择或修饰进行灵活设计和制备.稀土离子性能独特,有机配体种类繁多,将稀土离子与有机配体可控组装可获得许多结构多样、性能优异的Ln-MOFs材料.这些功能材料已在气体吸附与分离、发光器件、化学传感以及磁性材料等多方面显示出潜在应用价值.特别是Ln-MOFs材料作为非均相催化剂具有热稳定性高、比表面积大以及稀土离子配位环境多样等优点,近年来受到国内外研究者关注和重视.后合成修饰法(PSM)是利用MOFs骨架中不饱和配位的金属离子或潜在的有机反应基团,通过配位键或共价键方式引入有机或无机分子,制备具有新功能的骨架材料.本文采用PSM策略,将三种不同的有机二胺后合成修饰到具有配位不饱和位点的稀土金属有机骨架[Er(btc)]的孔道中,得到三种固体碱催化剂:Er(btc)(ED)0.75(H2O)0.25(2), Er(btc)(PP)0.55(H2O)0.45(3)和Er(btc)(DABCO)0.15(H2O)0.85(4).其中, btc为1,3,5-均苯三甲酸, ED为乙二胺, PP为哌嗪, DABCO位为三乙烯二胺.单晶结构分析表明,在[Er(btc)(H2O)]·DMF0.7(1)中,铒离子与六个btc配体的六个羧酸氧原子和一个水分子配位,形成变形的五角双锥几何构型.每个btc配体连接六个铒离子构成具有一维开放孔道(0.7 nm′0.7 nm)的三维立体结构.重要的是,孔道中的配位水分子和游离DMF分子可通过真空加热除去而不影响其骨架结构(热稳定性达500 oC),这将有利于对其进行后合成修饰.热重分析(TGA)表明,催化剂2在25–300 oC失去孔道中配位的乙二胺和水分子;催化剂3在250 oC之前失去孔道中的哌嗪和水分子;催化剂4则在100 oC之前失去孔道中配位的三乙烯二胺和水分子.粉末X射线衍射(PXRD)结果显示,后合成修饰过程并没有改变催化剂骨架的稳定性,其稳定性在空气中超过30 d.氮气吸附实验表明, Ln-MOF 1的比表面积和孔体积分别为2000 m2/g和0.75 cm3/g,平均孔尺寸为0.65 nm,与晶体结构分析结果基本一致.相比之下,后合成修饰的催化剂2的比表面积明显降低,为650 m2/g,而催化剂3和4由于后修饰较大体积的二胺分子(哌嗪和三乙烯二胺),表现出可忽略的氮气吸附能力.上述结果表明,催化剂2具有较高的有机胺负载量、较高的热稳定性和多孔性.采用苯甲醛和丙二腈的Knoevenagel缩合反应研究了三种固体碱的非均相催化能力.结果表明,在相同反应条件下,催化剂2具有很好的首次催化能力(99%),优于催化剂3(93%)和4(63%).并且,催化剂2循环使用三次后,催化能力几乎没有改变,而催化剂3和4的催化能力则逐渐降低,催化剂4在第三次使用时已无催化能力.滤出实验显示,催化剂2在反应过程中无活性物种离去进入液相体系中,即无乙二胺分子从催化剂骨架孔道中离去,证明其为非均相催化本质.而催化剂3和4则在反应过程中有二胺分子离去,进入反应液相中,从而导致其循环使用催化能力降低.催化剂2的底物择形催化反应结果显示,先是丙二腈分子进入催化剂孔道中,形成碳负离子,然后亲核进攻醛分子生成产物.因此,体积较大的腈衍生物因不能进入孔道而不能发生反应,而体积较大的醛分子则不受影响,能顺利地发生反应.  相似文献   

19.
共价有机框架材料催化研究进展   总被引:1,自引:0,他引:1  
共价有机框架材料(COFs)是一类具有高比表面积、高孔隙率、高结晶度的结构多样性多孔材料.由于COFs具有可设计性、易功能化的特点,可通过“自上而下”或者后修饰策略将具有催化活性的官能团或金属颗粒嵌入到材料骨架当中,从而设计出高效催化剂.COFs已逐渐在多相催化及其它催化领域展现出非常大的应用价值.本文综述了COFs作为催化剂载体在多种催化反应中的合成策略与应用,对COFs催化剂的现状进行了总结与展望,同时指出该领域面临的问题与挑战.  相似文献   

20.
鲁鸿  刘金宇  李红玉  许鹏飞 《化学学报》2018,76(11):831-837
近年来,氮杂环卡宾作为有机小分子催化剂在共催化领域取得了飞速发展,氮杂环卡宾通过与Lewis酸、Brønsted酸、Brønsted碱、氢键等不同催化模式相结合,可以有效提升惰性底物的活性和催化体系的立体控制能力,该策略已经成为复杂手性分子骨架合成的重要工具.相对而言,由于氮杂环卡宾与过渡金属的强配位能力,其与过渡金属共催化反应依旧是氮杂环卡宾在共催化领域中长期存在的挑战性工作.目前,氮杂环卡宾在与钯、铜和钌的共催化反应中取得了重要进展,通过配体和反应体系中碱性强弱的调控,可以有效实现氮杂环卡宾与过渡金属配位的可控调节,避免催化剂失活的同时提升反应体系催化活性.这一策略已经被成功用于一些活性分子骨架构建.本文将对该领域中的研究进展进行介绍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号