首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, citrate-capped gold nanoparticles (citrate-AuNPs) have been used for the selective extraction of indoleamines – 5-hydroxytryptophan (5-HTP), tryptophan (Trp), tryptamine (TA), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) – prior to their analysis by capillary electrophoresis/laser-induced native fluorescence (CE/LINF). The extinction spectra obtained for the citrate-AuNPs in the presence of indoleamines revealed that 5-HTP, 5-HT, and 5-HIAA were extracted mainly because of van der Waals interactions between the indole ring and the citrate-AuNPs (hydrophobic surface), while 5-HT and TA were extracted by electrostatic attractions between the amine group of the indoleamines and the citrate ligands adsorbed on the AuNP surface. The extracted indoleamines could be liberated from the AuNP surface by the addition of high concentrations of 2-mercaptoethanol (2-ME), which binds strongly to the AuNPs. The sensitivity of this method to indoleamines could be significantly enhanced by increasing the AuNP concentration, incubation time, and sample volume. Under optimal extraction and separation conditions, the combination of NP-based extraction and CE-LINF provided 48-, 4077-, 985-, 920-, and 4030-fold improvements in the limits of detection (signal-to-noise ratio of 3) for 5-HTP, Trp, TA, 5-HT, and 5-HIAA as compared to the analysis of five indoleamines by CE-LINF. In addition, this proposed method was successfully used for the determination of TA and 5-HT in urine.  相似文献   

2.
Mass spectrometry (MS)‐based quantitative proteomics has become a critical component of biological and clinical research for identification of biomarkers that can be used for early detection of diseases. In particular, MS‐based targeted quantitative proteomics has been recently developed for the detection and validation of biomarker candidates in complex biological samples. In such approaches, synthetic reference peptides that are the stable isotope labeled version of proteotypic peptides of proteins to be quantitated are used as internal standards enabling specific identification and absolute quantification of targeted peptides. The quantification of targeted peptides is achieved using the intensity ratio of a native peptide to the corresponding reference peptide whose spike‐in amount is known. However, a manual calculation of the ratios can be time‐consuming and labor‐intensive, especially when the number of peptides to be tested is large. To establish a liquid chromatography/matrix‐assisted laser desorption/ionization time‐of‐flight tandem mass spectrometry (LC/MALDI TOF/TOF)‐based targeted quantitative proteomics pipeline, we have developed a software named Mass Spectrometry based Quantification (MSQ). This software can be used to automate the quantification and identification of targeted peptides/proteins by the MALDI TOF/TOF platform. MSQ was applied to the detection of a selected group of targeted peptides in pooled human cerebrospinal spinal fluid (CSF) from patients with Alzheimer's disease (AD) in comparison with age‐matched control (OC). The results for the automated quantification and identification of targeted peptides/proteins in CSF were in good agreement with results calculated manually. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
色氨酸及其主要代谢产物的分离和在生物样品中的测定   总被引:4,自引:0,他引:4  
易咏红  廖卫平  赵绮华  陆雪芬 《色谱》1999,17(2):158-161
建立以乙酸缓冲系统和甲醇作流动相、电化学和紫外检测器联用的高效液相色谱法,分离和测定了色氨酸经5-羟色胺和犬尿酸原两条主要代谢途径的8种代谢物。使用三氯乙酸作离子对试剂以延长3-羟犬尿酸原的保留时间,分析了流动相pH值和三氯乙酸浓度对各物质分离的影响及检测条件。结果表明,pH值及三氯乙酸浓度对各物质保留时间有明显影响,可作为控制分离的主要因素。此外,对生物样品中各物质分离和检测条件进行了讨论。  相似文献   

4.
建立了一种应用高效液相色谱-串联质谱(HPLC-MS/MS)测定兔尿中与溴氰菊酯毒性相关的多种生物标志物的检测方法。分析物包括溴氰菊酯及其代谢产物1R,3R-二溴菊酸、3-苯氧基苯甲酸,以及5种生物标志物5-羟色胺、5-羟基吲哚乙酸、3-硝基丙酸、8-羟基脱氧鸟苷和6-甲氧基鸟嘌呤。样品经硅藻土基质固相分散萃取、三氯乙酸沉淀蛋白质和HLB固相萃取小柱净化,使用电喷雾离子源,在多反应监测模式下正负切换采集测定,其中溴氰菊酯、5-羟色胺、5-羟基吲哚乙酸、8-羟基脱氧鸟苷和6-甲氧基鸟嘌呤采用正离子模式,1R,3R-二溴菊酸、3-苯氧基苯甲酸和3-硝基丙酸采用负离子模式。基质校准曲线外标法定量。结果表明,7种生物标志物在各自的浓度范围内线性关系良好(R2不小于0.9914),5-羟基吲哚乙酸的检出限和定量限分别为20 μg/L和50 μg/L,其余化合物的检出限和定量限分别为0.2~5.0 μg/L和0.5~10 μg/L;在兔尿中3个不同添加水平的平均回收率为74.2%~98.7%,相对标准偏差(RSD)不大于12%,方法简单、快速、准确、灵敏,可作为溴氰菊酯暴露评估的检测方法。  相似文献   

5.
The term reactive oxygen species refers to small molecules that can oxidize, for example, nearby proteins, especially cysteine, methionine, tryptophan, and tyrosine residues. Tryptophan oxidation is always irreversible in the cell and can yield several oxidation products, such as 5-hydroxy-tryptophan (5-HTP), oxindolylalanine (Oia), kynurenine (Kyn), and N-formyl-kynurenine (NFK). Because of the severe effects that oxidized tryptophan residues can have on proteins, there is a great need to develop generally applicable and highly sensitive techniques to identify the oxidized residue and the oxidation product. Here, the fragmentation behavior of synthetic peptides corresponding to sequences recently identified in three skeletal muscle proteins as containing oxidized tryptophan residues were studied using postsource decay and collision-induced dissociation (CID) in matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry (MS) and CID in an electrospray ionization (ESI) double quadrupole TOF-MS. For each sequence, a panel of five different peptides containing Trp, 5-HTP, Kyn, NFK, or Oia residue was studied. It was always possible to identify the modified positions by the y-series and also to distinguish the different oxidation products by characteristic fragment ions in the lower mass range by tandem MS. NFK- and Kyn-containing peptides displayed an intense signal at m/z 174.1, which could be useful in identifying accordingly modified peptides by a sensitive precursor ion scan. Most importantly, it was always possible to distinguish isomeric 5-HTP and Oia residues. In ESI- and MALDI-MS/MS, this was achieved by the signal intensity ratios of two signals obtained at m/z 130.1 and 146.1. In addition, high collision energy CID in the MALDI-TOF/TOF-MS also permitted the identification of these two isomeric residues by their v- and w-ions, respectively.  相似文献   

6.
Hepcidin is known to be a key systemic iron‐regulatory hormone which has been demonstrated to be associated with a number of iron disorders. Hepcidin concentrations are increased in inflammation and suppressed in hemochromatosis. In view of the role of hepcidin in disease, its potential as a diagnostic tool in a clinical setting is evident. This study describes the development of a matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) assay for the quantitative determination of hepcidin concentrations in clinical samples. A stable isotope labeled hepcidin was prepared as an internal standard and a standard quantity was added to urine samples. Extraction was performed with weak cation‐exchange magnetic nanoparticles. The basic peptides were eluted from the magnetic nanoparticles using a matrix solution directly onto a target plate and analyzed by MALDI‐TOF MS to determine the concentration of hepcidin. The assay was validated in charcoal stripped urine, and good recovery (70–80%) was obtained, as were limit of quantitation data (5 nmol/L), accuracy (RE <10%), precision (CV <21%), within ‐day repeatability (CV <13%) and between‐day repeatability (CV <21%). Urine hepcidin levels were 10 nmol/mmol creatinine in healthy controls, with reduced levels in hereditary hemochromatosis (P < 0.000005) and elevated levels in inflammation (P < 0.0007). In summary a validated method has been developed for the determination of hepcidin concentrations in clinical samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A simple and efficient assay for glycosyltransferase activity on gold colloidal nanoparticles (GCNPs) by using laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is demonstrated by the enzymatic synthesis of the Lewis X trisaccharide on GCNPs containing GlcNAc residues. GCNPs containing multivalent sugars were well dispersed in aqueous solution and proved to be excellent acceptor substrates for the glycosyltransferase reaction. Direct LDI-TOF MS analysis of these GCNPs provided the ion peaks of the sugar derivatives, chemisorbed through S--Au linkages onto the GCNPs, even in the presence of contaminants such as proteins and salts. Thus, it enabled the rapid and direct detection of the enzymatic reaction on the GCNPs by subjecting a small amount (0.15 muL) of the reaction mixture to MS analysis without purification. Subsequent MS/MS analyses (LDI-LIFT-TOF/TOF method) of the product-carrying GCNPs enabled the structures of the sugar derivatives that had been constructed on the GCNPs by enzymatic glycosylation to be determined. A quantitative inhibition assay for glycosyltransferase by using LDI-TOF MS analysis on the GCNPs was demonstrated by using uridine 5'-diphosphate (UDP) as the inhibitor. This simple assay was then applied to the detection of the enzymatic activity of a crude cell extract of Escherichia coli, which produces Neisseria meningitidis beta-1,4-galactosyltransferase (beta-1,4-GalT). In this case, the GCNPs were roughly purified by means of ultrafiltration to remove the buffer and detergents before MS analysis. That the GCNPs are dissolved in solution in the reaction medium but are solid in the purification process is greatly advantageous for the simple and efficient detection of enzymatic activity in crude biological samples. Thus, GCNPs containing a variety of biomolecules may become a versatile and efficient tool for the rapid and direct monitoring of metabolism (metabolomics) in living cells when combined with LDI-TOF MS analysis.  相似文献   

8.
9.
This work demonstrated a simple platform for rapid and effective surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) measurements based on the layer structure of reduced graphene oxide (rGO) and gold nanoparticles. A multi-layer thin film was fabricated by alternate layer-by-layer depositions of rGO and gold nanoparticles (LBL rGO/AuNP). The flat and clean two-dimensional film was served as the sample plate and also functioned as the matrix in SALDI-TOF MS. By simply one-step deposition of analytes onto the LBL rGO/AuNP sample plate, the MS measurements of various homogeneous samples were ready to execute. The optimization of MS signal was reached by the variation of the layer numbers of rGO and gold nanoparticles. Also, the small molecules including amino acids, carbohydrates and peptides were successfully analyzed in SALDI-TOF MS using the LBL rGO/AuNP sample plate. The results showed that the signal intensity, S N−1 ratio and reproducibility of SALDI-TOF spectra have been significantly improved in comparison to the uses of gold nanoparticles or α-cyano-4-hydroxy-cinnamic acid (CHCA) as the assisted matrixes. Taking the advantages of the unique properties of rGO and gold nanoparticles, the ready-to-use MS sample plate, which could absorb and dissipate laser energy to analytes quite efficiently and homogeneously, has shown great commercial potentials for MS applications.  相似文献   

10.
In this study, we present a rapid and simple method for the separation and direct detection of glutathione by combining gold nanoparticles and MALDI–TOF‐MS with graphene as matrix. Gold nanoparticles enable the selective capture of thiol‐containing compounds. Gold nanoparticles bound with analytes can be mixed with graphene matrix for direct analysis by MALDI–TOF‐MS, which can avoid sample loss and contamination during transfer process. Compared with a conventional matrix, α‐cyano‐4‐hydroxycinnamic acid, graphene exhibits an excellent desorption/ionization efficiency, thermal and mechanical properties. The use of graphene as matrix avoids the fragmentation of analytes. Stable analysis was achieved with less background interference even at the concentration of 0.625 ng/μL. To further confirm its efficiency, the optimized approach was applied to the separation and detection of glutathione in mouse liver extraction. This result showed the great potential of detection of biologically important thiols in biochemical and biomedical research.  相似文献   

11.
A mass fragmentographic method for the determination of 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) in the same extract of rat brain tissue is decribed. Deuterium-labelled analogues were used as internal standards. 5-HT and 5-HIAA were separated by solvent extraction and pentafluoropropionyl derivatives were prepared for the mass fragmentographic analysis. Multiple ion analysis confirmed the identity of 5-HT and 5-HIAA in the rat brain. At the mass numbers used routinely for the determination of 5-HT and 5-HIAA in the rat brain. At the mass numbers used routinely for the determination of 5-HT and 5-HIAA, the experimental error was below 3% (calculated from mean values of 0.05 and 0.24 nmole, respectively). The recovery of the authentic compounds added to brain extracts was more than 95%. The levels of 5-HT and 5-HIAA in the rat brain were 2.95 +/- 0.16 and 0.64 +/- 0.18 nmole/g, respectively. More than 100 samples could be analyzed within 3 days. The presence of 5-hydroxytryptophol in rat brain was also investigated, but none could be detected either as a conjugate or as the free alcohol.  相似文献   

12.
Structure analyses of underivatized neutral lacto oligosaccharides are systematically performed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI TOF MS) and UV-MALDI ion-trap time-of-flight mass spectrometry (ion-trap/TOF MS) acquired in negative-ion mode. Interestingly, their fragmentation significantly differ each other. In postsource decay (PSD) in UV-MALDI TOF MS, cross-ring cleavage at the reducing terminal predominates. On the other hand, glycosyl bond cleavage (C-type fragmentation) takes place preferentially in collision induced dissociation (CID) in UV-MALDI ion-trap/TOF MS. The cross-ring cleavage in PSD similar to that in in-source decay occurs via a prompt reaction path characteristic of the UV-MALDI process itself. The product ion spectra of UV-MALDI ion-trap/TOF MS are similar to the electrospray ionization (ESI) ion-trap or quadrupole/TOF CID product ion spectra. During ion-trap/TOF MS experiments, the deprotonated molecular ions survive for several tens of milliseconds after CID event because the high internal energy chlorinated precursor ions are cooled by collisional cooling in the ion trap. The results obtained suggest that the PSD from the chlorinated precursor ion in UV-MALDI TOF MS might proceed as a two-step reaction; in the first, a high internal energy deprotonated molecular ion is generated as a reaction intermediate during the flight in the drift tube, and in the second, the rapid decomposition from the deprotonated molecular ion takes place.  相似文献   

13.
In the work, 4‐mercaptophenylboronic acid (4‐MPBA)‐functionalized gold nanoparticles were synthesized via a facile approach. At first, gold nanoparticles (about 50 nm) were prepared by a simple and convenient hydrothermal method based on a polyol process. Then, gold nanoparticles were modified with 4‐MPBA by the well‐known reaction of Au with the thiol groups. The MPBA‐functionalized gold nanoparticles were characterized by Fourier transform infrared spectra and UV/Vis adsorption spectra. Due to the fact that the boronic acid group on the surface of 4‐MPBA‐modified gold particles can form tight yet reversible covalent bonds with glycopeptides containing cis‐1,2‐diols groups, the MPBA‐modified gold nanoparticles were successfully applied to selective enrichment of glycopeptides. Isolation and enrichment of glycopeptides in a standard protein (asialofetuin and horseradish peroxidase) digestion and a complex sample were performed using MPBA‐modified gold nanoparticles, followed by matrix‐assisted laser desorption/ionization quadruple ion trap time‐of‐flight (MALDI‐QIT‐TOF) mass spectrometric analysis. The experimental results demonstrated that MPBA‐modified gold nanoparticles synthesized by the facile approach have the powerful potential for selective enrichment of glyciopeptides, and can be an alternative tool in glycoproteomics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, sensitive assay for aqueous solutions of 5-HT, especially platelet lysates, has been outlined. The precision of the assay is acceptable for routine use (C.V. less than 10%). The fluorescent intensity of 5-HT is reduced drastically when the pH of the medium falls below 1.0, whether the emission intensity is measured at 535 or 335 nm; thus the present assay of 5-HT in near-neutral solution is much more sensitive than the common assays which use a highly acidic environment for measurement of the final fluorescence. Interferences from the indoles TRY and DMT are negligible, but interferences from 5-HTP and 5-HIAA are 10 and 60%, respectively; therefore the assay is not specific for 5-HT. However, ion-exchange chromatography can readily be combined with the present assay to allow specific analysis of 5-HT and other indoles which have similar fluroescent patterns.  相似文献   

15.
An liquid chromatography–quadrupole time‐of‐flight (QqTOF) mass spectrometric method was developed for the determination of humanized or human monoclonal antibodies in rat plasma at the early drug discovery stage. Trastuzumab was used as a model monoclonal antibody. The method consisted of immunoprecipitation followed by tryptic digestion for sample preparation and LC‐TOF‐MS/MS analysis of specific signature peptides in the positive ion mode using electrospray ionization for analysis. A stable isotope‐labeled signature peptide was also used as internal standard. A quadratic regression (weighted 1/concentration2), with an equation y = ax2 + bx + c, was used to fit calibration curves over the concentration range of 0.500–100 µg/mL for trastuzumab. Samples from a pharmacokinetic study in rat were analyzed by this qualified LC‐TOF‐MS/MS method and concentrations were compared with those generated by enzyme linked immunosorbent assays method. The LC‐TOF‐MS/MS method was accurate and precise, with quantitative results comparable with those of ELISA. The qualification run met the acceptance criteria of ±25% accuracy and precision values for quality control samples. Within‐run accuracy ranged from 1.53 to 9.20% with precision values ≤10.29%. This LC‐TOF‐MS/MS method approach could be used as a complementary method for humanized or human monoclonal antibodies at the early drug discovery stage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The feasibility of a microfluidic-based liquid chromatography-electrospray ionization/mass spectrometric system (HPLC-Chip/ESI/MS) was studied and compared to a conventional narrow-bore liquid chromatography-electrospray ionization/mass spectrometric (LC-ESI/MS) system for the analysis of steroids. The limits of detection (LODs) for oxime derivatized steroids, expressed as concentrations, were slightly higher with the HPLC-Chip/MS system (50–300 pM) using an injection volume of 0.5 μL than with the conventional LC-ESI/MS (10–150 pM) using an injection volume of 40 μL. However, when the LODs are expressed as injected amounts, the sensitivity of the HPLC-Chip/MS system was about 50 times higher than with the conventional LC-ESI/MS system. The results indicate that the use of HPLC-Chip/MS system is clearly advantageous only in the analysis of low-volume samples. Both methods showed good linearity and good quantitative and chromatographic repeatability. In addition to the instrument comparisons with oxime derivatized steroids, the feasibility of the HPLC-Chip/MS system in the analysis of non-derivatized and oxime derivatized steroids was compared. The HPLC-Chip/MS method developed for non-derivatized steroids was also applied to the quantitative analysis of 15 mouse plasma samples.  相似文献   

17.
An efficient blood plasma clean-up method was developed, where methanol protein precipitation was applied, followed by zirconium silicate assisted exclusion of residual proteins. A strong binding of zirconium (IV) silicate to the proteins enabled the elimination of remaining proteins after solvent deproteinization through a rapid solid-phase extraction (SPE) procedure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF MS) was used for monitoring the proteins during clean-up practice applied to human plasma samples. The proteins were quantified by colorimetric detection using the bicinchoninic acid (BCA) assay. The presented analytical strategy resulted in the depletion of >99.6% proteins from human plasma samples. Furthermore, high-performance liquid chromatography hyphenated to diode-array and electrospray ionization mass spectrometric detection (HPLC–DAD/ESI MS) was applied for qualitative and quantitative analysis of the caffeoylquinic acids (CQAs) and their metabolites in human plasma. The procedure demonstrated high recoveries for the standard compounds spiked at different concentrations. Cynarin and chlorogenic acid were recovered in the range of 81–86% and 78–83%, respectively. Caffeic acid was extracted in the excess of 89–92%, while ferulic acid and dihydroxyhydrocinnamic acid showed a recovery of 87–91% and 92–95%, respectively. The method was partially validated in accordance with FDA-Industry Guidelines for Bioanalytical Method Validation (2001). The presented scheme improves the clean-up efficacy of the methanol deproteinization, significantly reduces the matrix effects and provides a great analytical tool for the isolation of small molecules from human plasma.  相似文献   

18.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

19.
A direct ultra-performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) for simultaneous measurement of urinary 5-hydroxytryptophol glucuronide (GTOL) and 5-hydroxyindoleacetic acid (5-HIAA) was developed. The GTOL/5-HIAA ratio is used as an alcohol biomarker with clinical and forensic applications. The method involved dilution of the urine sample with deuterated analogues (internal standards), reversed-phase chromatography with gradient elution, electrospray ionisation and monitoring of two product ions per analyte in selected reaction monitoring mode. The measuring ranges were 6.7-10 000 nmol/l for GTOL and 0.07-100 micromol/l for 5-HIAA. The intra- and inter-assay imprecision, expressed as the coefficient of variation, was below 7%. Influence from ion suppression was noted for both compounds but was compensated for by the use of co-eluting internal standards. The accuracy in analytical recovery of added substance to urine samples was 96 and 98%, respectively, for GTOL and 5-HIAA. Method comparison with GC-MS for GTOL in 25 authentic patient samples confirmed the accuracy of the method with a median ratio between methods (GC-MS to UPLC-MS/MS) of 1.14 (r(2) = 0.975). The difference is explained by the fact that the GC-MS method also measures unconjugated 5-hydroxytryptophol naturally present in urine. The comparison with data for 5-HIAA obtained by an HPLC method demonstrated a median ratio of 1.05 between the methods. The UPLC-MS/MS method was capable of measuring endogenous GTOL and 5-HIAA levels in urine, which agreed with the literature data. In conclusion, a fully validated and robust direct method for the routine measurement of urinary GTOL and 5-HIAA was developed.  相似文献   

20.
Polyacrylamide gel electrophoresis is widely used for protein separation and it is frequently the final step in protein purification in biochemistry and proteomics. Using a commercially available amine-reactive isobaric tagging reagent (iTRAQ) and mass spectrometry we obtained reproducible, quantitative data from peptides derived by tryptic in-gel digestion of proteins and phosphoproteins. The protocol combines optimized reaction conditions, miniaturized peptide handling techniques and tandem mass spectrometry to quantify low- to sub-picomole amounts of (phospho)proteins that were isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Immobilized metal affinity chromatography (FeIII-IMAC) was efficient for removal of excess reagents and for enrichment of derivatized phosphopeptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Phosphopeptide abundance was determined by liquid chromatography/tandem mass (LC/MS/MS) using either MALDI time-of-flight/time-of-flight (TOF/TOF) MS/MS or electrospray ionization quadrupole time-of-flight (ESI-QTOF) MS/MS instruments. Chemically labeled isobaric phosphopeptides, differing only by the position of the phosphate group, were distinguished and characterized by LC/MS/MS based on their LC elution profile and distinct MS/MS spectra. We expect this quantitative mass spectrometry method to be suitable for systematic, comparative analysis of molecular variants of proteins isolated by gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号