首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

9.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
The gas phase molecular structure of methyl vinyl ether at room temperature has been studied by joint analysis of electron diffraction and microwave data. Constraints on geometrical and thermal parameters were derived from the geometry and force field of the s-cis form, obtained by ab-initio calculations (4–21 G basis set) after complete geometry relaxation. A range of models was investigated that fits all available data (infrared, microwave and electron diffraction). The following rg/r-parameters were obtained: C=C: 1.337 Å, C(sp2)---O: 1.359 Å, C(sp3)---O: 1.427 Å, : 1.102 Å C=C---O : 127.3° and COC: 116.8°. Experimental rg---re (ab initio) corrections are given for C=C, C(sp2)---O and Csp3)---O.

This investigation demonstrates that molecular orbital constrained electron diffraction is sufficiently reliable and in such a manner that it can be applied to more complicated problems.  相似文献   


12.
硫醚作为一类重要的含硫功能分子,广泛存在于天然产物、药物及有机发光材料中。鉴于硫醚类化合物的重要性,近年来化学家们发展了一系列高效构建硫醚的方法。与传统的有机卤化物/有机硼酸与硫醇交叉偶联的合成方法相比,C―H官能化直接构建硫醚的策略因其步骤经济性、原子经济性备受合成化学家们关注,并取得重要进展。本文根据不同过渡金属进行分类,系统阐述了近年来过渡金属催化/参与C―H官能化或无过渡金属催化C―H官能化构建硫醚这一方向研究进展。  相似文献   

13.
采用局域密度泛函理论(LDA)的VWN方法, 结合周期平板模型, 在DNP基组下, 研究了苯分子在Au(100)面的吸附情况. 构型优化的结果表明, 苯分子在穴位吸附活性最高, 吸附能为-184.8~-184.3 kJ•mol-1, 苯环发生扭曲, C—C键明显拉长, 出现了介于苯和1,4-环己二烯之间的船状构型, 船头的2个C原子从sp2杂化重新进行sp3杂化. 苯分子在桥位和顶位的吸附活性较低, 吸附能分别为-156.7~-145.3 kJ•mol-1、-116.5~-117.0 kJ•mol-1, 苯分子构型有稍微的改变. 轨道分析的结果还表明, 吸附之后苯分子的轨道简并度降低, 苯分子的LUMO轨道和邻近Au原子的dz2轨道叠加比较好, 两个对位的C原子以双σ形式连接到表面邻近的Au原子上.  相似文献   

14.
X Jia  F Peng  C Qing  C Huo  X Wang 《Organic letters》2012,14(15):4030-4033
A domino C(sp(3))-H functionalization of glycine derivatives was achieved under catalytic radical cation salt induced conditions, producing a series of quinolines. The proposed mechanism shows that a peroxyl radical cation, which is generated by the coupling between O(2) and TBPA(+?), might be involved to initiate the catalytic oxidation.  相似文献   

15.
普通烷烃C―H键是指不受杂原子和碳不饱和官能团影响的sp3C―H键,如甲烷、链烷烃和环烷烃的C―H键等。它们具有较大的键能和较小的酸碱性,因而呈现惰性,通常不易在温和条件下发生断裂。同时,除个别烷烃以外,普通烷烃往往具有不同性质和不同位置的C―H键,其反应选择性也是一个难点。近半个世纪以来,金属参与的惰性C―H键活化及官能化反应得到了重视与发展。其中,在没有官能团导向作用下,过渡金属催化剂对甲烷C―H键和普通烷烃一级C―H键进行选择性亲电活化和氧化加成,从而导致官能化反应发生是比较有效的。本文介绍了这些方法的研究进展,包含机理分析以及相关反应的建立。  相似文献   

16.
张谦  余彦葶  李家乐  李栋 《化学通报》2020,83(7):615-620
喹啉是一类重要的杂环化合物,喹啉类化合物的合成方法研究备受关注。通过喹啉的碳-氢键直接官能化反应制备取代喹啉类衍生物是一种简便而有效的方法。然而,喹啉的C5位选择性碳-氢键官能化反应仍然存在挑战,目前大多在过渡金属催化下实现,无过渡金属条件下的反应亟待开发。本文按成键类型(碳-卤键、碳-氮键、碳-氧键、碳-硫键和碳-碳键)分类综述了近年来在无过渡金属条件下喹啉C5位碳-氢键官能化反应的研究进展,并对该领域的研究现状及所存在的问题进行了总结。  相似文献   

17.
Density functional theory(DFT) calculations were carried out on the gold-catalyzed cyclization of alkynyl benzodioxin to 8-hydroxy-isocoumarin reaction to show the molecular mechanism of the reaction. The conclusions obtained from this work are different from those in the previous experimental study. The results show that water molecule acts as both the reactant and the proton shuttle, and promotes the reaction with gold complexes under mild conditions. The nucleophilic addition site of water on the substrate is the C(sp3) atom on the side of the substrate far away from the oxabenzene ring, resulting in C(sp3)—O bond breaking in the substrate. The formation of new C—O bond and the cleavage of C—O bond in the substrate follow a step-by-step mechanism. The oxygen in the side-product acetone comes from the contribution of water in the reaction system. The regioselectivity of the reaction originates from the polarization of alkynyl π-electrons induced by substituents.  相似文献   

18.
张淑贞  郑超  朱长进 《物理化学学报》2015,31(12):2395-2404
芳香噻嗪类衍生物被证明是一类选择性较好的高活性醛糖还原酶抑制剂(ARIs).本文对44个芳香噻嗪类化合物进行了分子对接(docking)和三维定量构效关系(3D-QSAR)研究,并探索了此类化合物与醛糖还原酶(ALr2)的作用机理.醛糖还原酶与醛还原酶(ALR1)活性位点的叠加结果显示, ALr2中残基Leu 300和Cys298的存在是化合物1m具有高选择性的原因.分别建立了比较分子场分析方法(CoMFA, q2 = 0.649, r2 =0.934; q2:交叉验证相关系数, r2:非交叉验证相关系数)和比较分子相似性指数分析方法(CoMSIA, q2 = 0.746, r2 = 0.971)模型,并对影响此类化合物生物活性的结构进行了鉴定.结果显示,两个模型均具有较高预测能力,并通过测试集中的7个化合物进行了验证,其中CoMFA模型和CoMSIA模型的预测相关系数(rPred2)分别为0.748和0.828. 3D-QSAR模型中的三维等值线图表明,在化合物1m的苄基环上C3和C4位置以及苯并噻嗪母核上C5和C7位置进行改进可能对生物活性的提高有利,此预测与我们前期报道的苯并噻嗪母核C7位改进结果一致.本文所建3D-QSAR模型能够在理性设计具有更高生物活性的新型ARIs中发挥重要作用.  相似文献   

19.
氢取代石墨单炔是一种仅由苯环上的sp2杂化碳和氢与乙炔基上的sp杂化碳组成具有与石墨炔相似平面网状结构的二维富碳材料。本文以碳化钙和三溴苯为原料,通过机械化学方法合成了氢取代石墨单炔,并通过X射线电子能谱、拉曼光谱、固体核磁共振成像1H谱和透射电子显微镜加以证实。紫外可见漫反射吸收光谱和电化学测试表明样品为p型半导体,带隙为2.30 eV,在硫酸钠溶液(pH = 7)中的析氧起始过电位为0.04 V,在催化产氧和光催化方面具有应用潜力。  相似文献   

20.
A catalytic synthesis of N-benzothiazol-2-yl-amides from 1-acyl-3-(phenyl)thioureas was achieved in the presence of a palladium catalyst through the C(sp2)–H functionalization/C–S bond formation. This synthetic methodology can produce various N-benzothiazol-2-yl-amides in high yields with good functional group tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号