首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
使用柠檬酸三钠作为稳定剂,硼氢化钠作为还原剂,用浸渍还原法制备了20%(w)Pt60Ru30Co10/C催化剂.利用透射电子显微镜(TEM)和X射线衍射(XRD)对催化剂进行了表征.考察了不同pH值对制备催化剂的催化甲醇氧化能力及稳定性的影响,并使用预吸附单层CO溶出方法研究了其抗中毒能力.结果表明,当pH=8时,制备的PtRuCo/C对甲醇氧化具有最高的催化活性,其催化活性远高于商业化的Pt50Ru50/C,同时催化剂的稳定性最好,高于商业化的Pt50Ru50/C的稳定性,而且预吸附单层CO的起始氧化电位比Pt50Ru50/C的明显负移.  相似文献   

2.
采用密度泛函理论中的B3LYP方法研究了石墨烯中的单空位缺陷对铂原子(Pt)催化解离O_2分子的影响.计算发现O_2分子首先通过[2+1]或[2+2]环加成作用吸附在以单空位缺陷石墨烯为载体的Pt上(Pt-SV),并以不同的路径进行解离,吸附能分别为-158.23和-152.45kJ/mol.由于石墨烯片上单空位缺陷的存在,O_2分子更容易吸附在单空位缺陷处的Pt上,并且O_2在Pt-SV上解离的能垒(130.25kJ/mol)也明显比在Pt-pristine上解离的能垒低(76.23kJ/mol).因此石墨烯上单空位缺陷的存在提高增加了Pt的催化能力.  相似文献   

3.
综述了用于燃料电池中氧还原反应(ORR)的石墨烯衍生物负载的各种纳米催化剂的最新进展.介绍了用于表征石墨烯基电催化剂的常规电化学技术以及石墨烯基电催化剂最新的研究进展.负载于还原氧化石墨烯(RGO)上的Pt催化剂的电化学活性和稳定性均得到显著提高.其它贵金属催化剂,如Pd,Au和Ag也表现出较高的催化活性.当以RGO或少层石墨烯为载体时,Pd催化剂的稳定性提高.讨论了氧化石墨烯负载Au或Ag催化剂的合成方法.另外,以N4螯合络合物形式存在的非贵过渡金属可降低氧的电化学性能.Fe和Co是可替代的廉价ORR催化剂.在大多数情况下,这些催化剂稳定性和耐受性的问题均可得到解决,但其整体性能还很难超越Pt/C催化剂.  相似文献   

4.
以嵌段共聚物P123为模板制备介孔氧化硅SBA-15, 并以此SBA-15为模板, 以蔗糖为碳源在不同的温度下(600-900 °C)制备介孔碳CMK-3. 采用浸渍还原法, 以硼氢化钠为还原剂, 制备介孔碳载Pt电催化剂, 即20% (w) Pt/CMK-3. 利用循环伏安法(CV)、计时电流法等测试电催化剂对甲醇的催化氧化性能及稳定性. 预吸附单层CO溶出伏安法研究测试催化剂抗CO中毒能力. 结果表明在烧制温度为900 °C时制备的介孔碳载Pt催化剂具有最好的催化性能和稳定性, 而在烧制温度为700 °C时制备的介孔碳载Pt催化剂对CO有较低的溶出电位.  相似文献   

5.
Au/Si 载体负载单层Pt 催化剂的制备及其电催化性能的研究   总被引:1,自引:0,他引:1  
以Si 纳米粉为载体, 通过化学镀的方法在其表面部分沉积纳米Au 颗粒后, 再通过欠电位的方法在Au 颗粒表面沉积了单层及亚单层的Pt. 通过透射电子显微镜(TEM), 循环伏安(CV)等方法对所制备的Pt/Au/Si 催化剂进行了形貌及电化学性能的表征. 结果表明, 该单层Pt 覆盖的Au/Si 催化剂对于甲醇的质量电催化活性是商业E-TEK(Pt/C)的8 倍,相比于不同层数的Pt, 单层覆盖时Pt 的利用率最高, 该单层Pt 负载Au/Si 催化剂对于抑制CO 的中毒的性能也比商业E-TEK(Pt/C)有明显的提高.  相似文献   

6.
综述了用于燃料电池中氧还原反应(ORR)的石墨烯衍生物负载的各种纳米催化剂的最新进展。介绍了用于表征石墨烯基电催化剂的常规电化学技术以及石墨烯基电催化剂最新的研究进展。负载于还原氧化石墨烯(RGO)上的Pt催化剂的电化学活性和稳定性均得到显著提高。其它贵金属催化剂,如Pd, Au和Ag也表现出较高的催化活性。当以RGO或少层石墨烯为载体时, Pd催化剂的稳定性提高。讨论了氧化石墨烯负载Au或Ag催化剂的合成方法。另外,以N4螯合络合物形式存在的非贵过渡金属可降低氧的电化学性能。 Fe和Co是可替代的廉价ORR催化剂。在大多数情况下,这些催化剂稳定性和耐受性的问题均可得到解决,但其整体性能还很难超越Pt/C催化剂。  相似文献   

7.
高氧还原活性担载铂催化剂的研发是加快质子交换膜燃料电池商业化进程的主要手段之一。以石墨烯为碳源,1,10-菲啰啉为氮源,FeCl3为铁源,用浸渍法制备铁氮掺杂石墨烯(Fe/N-G)载体,并通过乙二醇还原法获得PtFe/N-G催化剂,探究铁氮原子的引入对石墨烯担载铂催化剂氧还原反应催化活性的影响。采用X射线衍射、比表面积和孔径分布测试、X射线光电子能谱等表征手段对载体及催化剂结构进行表征,使用电化学方法对载体和催化剂的氧还原反应活性进行测试。结果表明,PtFe/N-G催化剂的氧还原反应起始电位及半波电位分别为0.96 V、0.83 V,优于相同Pt担载量的商业20%Pt/C催化剂。铁氮掺杂后,石墨烯载体具有较大的孔径更有利于氧还原反应过程中生成物与反应物的传递,PtFe/N-G催化剂中存在吡啶氮和Fe-N型氮与铂纳米颗粒的协同催化,以及铂纳米颗粒与铁氮掺杂石墨烯载体间的相互作用,是PtFe/N-G催化剂具有优异的氧还原催化活性的可能原因。  相似文献   

8.
CO在铂修饰的氧化钛电极上电催化氧化行为的研究   总被引:3,自引:0,他引:3  
通过阴极还原-阳极氧化法制备了Pt—TiO2/Ti电极,研究了CO在该电极上的电化学行为和电极制备条件对CO电催化氧化的影响.结果表明,与Pt电极相比.CO在Pt—TiO2/Ti电极上的氧化峰峰电位负移了100mV,并且表现出较好的稳定性.通过XPS技术对Pt—TiO2/Ti电极进行了表征.发现Pt以金属形式存在,Ti以TiO2形式存在.Pt—TiO2/Ti电极能抗CO中毒的原因可能是因为TiO2的掺杂使引起催化剂中毒的桥式吸附的CO物种在复合催化剂上的吸附率较低所致.  相似文献   

9.
采用高温热解聚苯胺修饰的氧化石墨烯(PANI-GO),得到了氮掺杂的还原氧化石墨烯碳材料(N-RGO),以其负载Pt制备了Pt/N-RGO纳米结构电催化剂.采用透射电镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)谱及拉曼光谱等技术对N-RGO和Pt/N-RGO的形貌及结构进行了表征,用循环伏安、计时电流等电化学技术研究了Pt/N-RGO电极催化剂对CO溶出反应和甲醇电氧化反应的催化性能.结果表明:高温热解PANIGO可同时实现GO的还原及其氮掺杂的过程,氮掺杂引起还原氧化石墨烯碳材料表面缺陷结构和导电性的增加;与相应的未掺杂氮样品Pt/RGO相比较,Pt/N-RGO样品上Pt颗粒的分散更均匀,显示出更强的抗CO毒化能力和更高的甲醇电氧化催化活性及稳定性.  相似文献   

10.
质子交换膜燃料电池具有比能量高、结构简单、工作温度低、高效清洁和安静无摩擦等优点,是一种非常具有发展前景的电源.燃料电池借用电催化剂把燃料与氧化剂中的化学能转化为电能,通常采用碳粉负载的Pt催化剂.在燃料电池的工作环境下,碳粉载体容易腐蚀和团聚,降低了催化剂活性和稳定性,进而降低了燃料电池的使用寿命.因此,探索高稳定性的催化剂载体有利于提高催化剂的稳定性,促进燃料电池的实用化进程.为增强催化剂载体的抗腐蚀能力,一些金属氧化物如SnO2,WO3,CeO2和TiO2等被用作催化剂载体.其中,TiO2因具有稳定的化学性能以及与金属之间的"强相互作用"而备受研究者关注.但TiO2载体比表面积小和导电能力弱等缺点限制了它在燃料电池中的应用.石墨烯具有卓越的导电性和比表面积,却容易发生团聚.利用TiO2与碳材料间存在的协同作用,将TiO2与石墨烯复合来制备复合载体,能够增强TiO2的导电能力,抑制石墨烯的团聚,提高催化剂载体的化学稳定性和比表面积.本文采用微波辅助溶剂热法制备了石墨烯-TiO2复合载体和Pt/石墨烯-TiO2催化剂,研究了TiO2含量对催化剂活性和稳定性的影响.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对制备的样品进行了微观结构和成分表征.结果表明,Pt/石墨烯-TiO2催化剂中TiO2为立方状纳米颗粒,粒径约为60 nm,均匀地分布在石墨烯上;Pt纳米粒子倾向于锚定在TiO2与石墨烯之间,而且分布均匀.采用线性伏安扫描(LSV)和循环伏安法(CV)测试了不同TiO2含量的Pt/石墨烯-TiO2催化剂的活性和稳定性.发现TiO2的加入确实能够提高催化剂的稳定性,随着TiO2含量的提高,催化剂稳定性增加.当TiO2含量为20%时,催化剂的起始电压与极限电流均与Pt/C催化剂接近.经过循环伏安扫描3000圈的快速老化测试后,Pt/石墨烯-TiO2催化剂起始电压的负移明显低于Pt/C催化剂,呈现了优良的稳定性和催化活性.  相似文献   

11.
The finding of new metal alloyed nanocrystals (NCs) with high catalytic activity and low cost to replace PtRu NCs is a critical step toward the commercialization of fuel cells. In this work, a simple cation replacement reaction was utilized to synthesize a new type of ternary Fe(1-x)PtRu(x) NCs from binary FePt NCs. The detailed structural transformation from binary FePt NCs to ternary Fe(1-x)PtRu(x) NCs was analyzed by X-ray absorption spectroscopy (XAS). Ternary Fe(35)Pt(40)Ru(25), Fe(31)Pt(40)Ru(29), and Fe(17)Pt(40)Ru(43) NCs exhibit superior catalytic ability to withstand CO poisoning in methanol oxidation reaction (MOR) than do binary NCs (FePt and J-M PtRu). Also, the Fe(31)Pt(40)Ru(29) NCs had the highest alloying extent and the lowest onset potential among the ternary NCs. Furthermore, the origin for the superior CO resistance of ternary Fe(1-x)PtRu(x) NCs was investigated by determining the adsorption energy of CO on the NCs' surfaces and the charge transfer from Fe/Ru to Pt using a simulation based on density functional theory. The simulation results suggested that by introducing a new metal into binary PtRu/PtFe NCs, the anti-CO poisoning ability of ternary Fe(1-x)PtRu(x) NCs was greatly enhanced because the bonding of CO-Pt on the NCs' surface was weakened. Overall, our experimental and simulation results have indicated a simple route for the discovery of new metal alloyed catalysts with superior anti-CO poisoning ability and low usage of Pt and Ru for fuel cell applications.  相似文献   

12.
The direct methanol fuel cell (DMFC) is considered as a promising power source, because of its abundant fuel source, high energy density and environmental friendliness. Among DMFC anode materials, Pt and Pt group metals are considered to be the best electrocatalysts. The combination of Pt with some specific transition metal can reduce the cost and improve the tolerance toward CO poisoning of pure Pt catalysts. In this paper, the geometric stabilities of PtFe/PdFe atoms anchored in graphene sheet and catalytic CO oxidation properties were investigated using the density functional theory method. The results show that the Pt (Pd) and Fe atoms can replace C atoms in graphene sheet. The CO oxidation reaction by molecular O2 on PtFe–graphene and PdFe–graphene was studied. The results show that the Eley–Rideal (ER) mechanism is expected over the Langmuir–Hinshelwood mechanism for CO oxidation on both PtFe–graphene and PdFe–graphene. Further, complete CO oxidation on PtFe–graphene and PdFe–graphene proceeds via a two‐step ER reaction: CO(gas) + O2(ads) → CO2(ads) + O(ads) and CO(gas) + O(ads) → CO2(ads). Our results reveal that PtFe/PdFe commonly embedded in graphene can be used as a catalyst for CO oxidation. The microscopic mechanism of the CO oxidation reaction on the atomic catalysts was explored.  相似文献   

13.
The development of efficient and stable electrocatalysts for the oxygen reduction reaction (ORR) is critical for the large-scale production of fuel cells. Platinum (Pt) nanoparticle catalysts show excellent performance for ORR, though the high cost of Pt is a limiting factor that directly impacts fuel cell production costs. Alloying Pt with other transition metals is an effective strategy to reduce Pt utilization whilst maintaining good ORR performance. In this work, novel hollow PtFe alloy catalysts were successfully synthesized by high-temperature pyrolysis of SiO2-coated Pt-Fe3O4 nanoparticle dimers supported on carbon at 900 °C, followed by SiO2 shell removal and partial dealloying of the PtFe nanoparticles formed using HF. The obtained hollow PtFe nanoparticle catalysts (denoted herein as PtFe-900) showed a 2.3-fold enhancement in ORR mass activity compared to PtFe nanoparticles synthesized without SiO2 protection, and a remarkable 7.8-fold enhancement relative to a commercial Pt/C catalyst. Further, after 10 000 potential cycles, the ORR mass activity of PtFe-900 remained very high (90.9 % of the initial mass activity). The outstanding ORR performance of PtFe-900 can be attributed to the modification of Pt lattice and electronic structure by alloying with Fe at high temperature under the protection of the SiO2 coating. This work guides the development of improved, highly dispersed Pt-based alloy nanoparticle catalysts for ORR and fuel cell applications.  相似文献   

14.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   

15.
Alcohols fuel electro-oxidation is significant to the development of direct alcohols fuel cells, that are considered as a promising power source for portable electronic devices. Currently, the catalyst was restricted by the serious poisoning effect and high cost of noble metals. Developing low-cost Pt alloy with high performance and anti-CO poisoning ability was highly desired. In this work, PtCo-NC catalyst was synthesized by combining Pt nanoparticles with ZIF-67 after annealing in the tube furnace and the in situ generated N-doped carbon from ZIF-67 was functionalized to support the PtCo alloy nanoparticle. The structure and morphology were probed by X-ray diffraction, scanning electron microscope and transmission electron microscope, and the electrochemical performance was evaluated for alcohols of methanol and ethanol oxidation in the acid electrolyte. Compared with the reference sample of Pt/C, several times performance enhancement for alcohols fuel oxidation was found on PtCo-NC catalyst as well as the good catalytic stability. Specifically, the peak current density of PtCo-NC was 79.61 mA∙cm−2 for methanol oxidation, about 2.2 times higher than that of the Pt/C electrode (36.97 mA∙cm−2) and 2.5 times higher than that of the commercial Pt/C electrode (31.23 mA∙cm−2); it was 62.69 mA∙cm–2 for ethanol oxidation, about 1.65 times higher than that of Pt/C catalyst (37.99 mA∙cm−2) and commercial Pt/C electrode (37.77 mA∙cm−2). These catalytic performances were also much higher than some analogous catalysts developed for alcohols fuel oxidation. A much higher anti-CO poisoning ability was demonstrated by the CO stripping voltammetry experiment, in which the COad oxidation peak potential for PtCo-NC was 0.46 V, ca. 110 mV negative shift compared with Pt/C catalyst at 0.57 V. A strong electronic effect was indicated by the peak position shifting to the lower binding energy direction by 0.3 eV on PtCo-NC compared with Pt/C reference catalyst. According to the d-band center theory, the electron-enriched state of Pt will decrease the interaction strength of poisoning intermediates adsorbed on its surface; Moreover, according to the bifunctional catalytic mechanism, the presence of Co can form the adsorbed oxygen-containing species (―OH) more easily than Pt at low potentials, and this oxygen-species were helpful in the oxidation of COad at neighboring Pt sites. The high catalytic performance for alcohols fuel oxidation could be due to the largely improved anti-CO poisoning ability and the synergistic effect between the in situ formed PtCo nanoparticles and the N-doped carbon support.  相似文献   

16.
The catalytic performance of cluster-derived PtFe/SiO(2) bimetallic catalysts for the oxidation of CO has been examined in the absence and presence of H(2) (PROX) and compared to that of Pt/SiO(2). PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were prepared from PtFe(2)(COD)(CO)(8) and Pt(5)Fe(2)(COD)(2)(CO)(12) organometallic cluster precursors, respectively. FTIR data indicate that both clusters can be deposited intact on the SiO(2) support. The clusters remained weakly bonded to the SiO(2) surface and could be extracted with CH(2)Cl(2) without any significant changes in their structure. Subsequent heating in H(2) led to complete decarbonylation of the supported clusters at approximately 350 degrees C and the formation of Pt-Fe nanoparticles with sizes in the 1-2 nm range, as indicated by HRTEM imaging. A few larger nanoparticles enriched in Pt were also observed, indicating that a small fraction of the deposited clusters were segregated to the individual components following the hydrogen treatment. A higher degree of metal dispersion and more homogeneous mixing of the two metals were observed during HRTEM/XEDS analysis with the cluster-derived samples, as compared to a PtFe/SiO(2) catalyst prepared through a conventional impregnation route. Furthermore, the cluster-derived PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were more active than Pt/SiO(2) and the conventionally prepared PtFe/SiO(2) sample for the oxidation of CO in air. However, substantial deactivation was also observed, indicating that the properties of the Pt-Fe bimetallic sites in the cluster-derived samples were altered by exposure to the reactants. The Pt(5)Fe(2)/SiO(2) sample was also more active than Pt/SiO(2) for PROX with a selectivity of approximately 92% at 50 degrees C. In this case, the deactivation with time on stream was substantially slower, indicating that the highly reducing environment under the PROX conditions helps maintain the properties of the active Pt-Fe bimetallic sites.  相似文献   

17.
Porous carbon (PC-900) was prepared by direct carbonization of porous metal-organic framework (MOF)-5 (Zn4O(bdc)3, bdc?=?1,4-benzenedicarboxylate) at 900 °C. The carbon material was deposited with PtM (M?=?Fe, Ni, Co, and Cu (20 %) metal loading) nanoparticles using the polyol reduction method, and catalysts PtM/PC-900 were designed for direct ethanol fuel cells (DEFCs). However, herein, we are reporting PtFe/PC-900 catalyst combination which has exhibited superior performance among other options. This catalyst was characterized by powder XRD, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and selected area electron diffraction (SAED) technique. The electrocatalytic capability of the catalyst for ethanol electrooxidation was investigated using cyclic voltammetry and direct ethanol single cell testing. The results were compared with those of PtFe and Pt supported on Vulcan XC72 carbon catalysts (PFe/CX-72 and Pt/XC-72) prepared via the same method. It has been observed that the catalyst PtFe/PC-900 developed in this work showed an outstanding normalized activity per gram of Pt (6.8 mA/g Pt) and superior power density (121 mW/cm2 at 90 °C) compared to commercially available carbon-supported catalysts.  相似文献   

18.
添加Fe对Pt/KL沸石芳构化及抗硫性能的影响   总被引:1,自引:0,他引:1  
Pt/KL沸五催化剂对正己烷的芳构化反应具有特别高的活性和选择性,但是它对原料中硫的存在非常敏感,要求合硫量小平川’,而工业催化剂的硫含量允许10’.这使得Pt/KL佛石催化剂一直未能工业化山.近年来,文献上开始出现了一些KL佛石上负载双金属的研究工作[’-’1.通过  相似文献   

19.
采用改进的Hummers法制备氧化石墨烯,然后以其为载体前驱体,以三嵌段共聚物P123为还原剂、保护剂和形貌控制剂,分别采用液相共还原法和连续还原法,制备了三种石墨烯负载PtPd(PtPd/G)纳米催化剂;氧化石墨烯与金属前驱体同步还原,从而达到原位负载的效果。采用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)等表征方法分析了PtPd/G纳米催化剂的形貌、结构和组成,结果表明:采用共还原法得到的两种催化剂均为纳米枝结构;采用连续还原法得到了空心纳米结构。电化学循环伏安法和计时电流法研究表明:空心结构PtPd/G纳米催化剂抗CO中毒能力最强,100°C下共还原合成的PtPd/G纳米枝催化剂具有最佳的电催化氧化甲醇性能,约是商业化Pt/C催化剂的1.5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号