首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了Fe(acac)3-A l(i-Bu)3-α,α′-联吡啶(acac=乙酰丙酮)催化体系催化丙烯腈(AN)与苯乙烯共聚合,用元素分析和核磁共振研究了共聚物的结构,在单体比为1∶1时共聚物中丙烯腈/苯乙烯含量分别为49.3%和50.7%.用凝胶渗透色谱研究了聚合物分子量和分子量分布,共聚物分子量分布较窄.动力学研究表明共聚合反应对单体浓度呈一级关系,表观活化能为57.8 kJ/mol.  相似文献   

2.
研究了Fe(acac)3-Al(i-Bu)3-α,α'-联吡啶(acac=乙酰丙酮)催化体系催化丙烯腈(AN)与苯乙烯共聚合,用元素分析和核磁共振研究了共聚物的结构,在单体比为1:1时共聚物中丙烯腈/苯乙烯含量分别为49.3%和50.7%.用凝胶渗透色谱研究了聚合物分子量和分子量分布,共聚物分子量分布较窄.动力学研究表明共聚合反应对单体浓度呈一级关系,表观活化能为57.8kJ/mol.  相似文献   

3.
Fe(acac)3-Al(i-Bu)3-CCl4催化马来酸酐与降冰片烯共聚   总被引:1,自引:0,他引:1  
房江华  杨科芳  胡富陶 《催化学报》2005,26(12):1113-1116
 研究了Fe(acac)3-Al(i-Bu)3-CCl4(acac=乙酰丙酮)催化体系对马来酸酐(MA)与降冰片烯(NBE)交替聚合反应的催化性能. 用元素分析、核磁共振和红外光谱研究了共聚物的结构,在单体比为1∶1时,共聚物中MA和NBE的含量分别为52.2%和47.8%. 凝胶渗透色谱结果表明共聚物分子量分布窄. 动力学研究结果表明, MA与NBE共聚对单体浓度呈一级反应,其表观活化能为74.3 kJ/mol.  相似文献   

4.
研究了Fe(acac)3-Al(i-Bu)3-8-羟基喹啉(acac=乙酰丙酮)催化体系催化丙烯酸甲酯(MA)聚合,用凝胶渗透色谱研究了聚合物分子量和分子量分布,结果显示,分子量分布很窄,动力学研究表明,聚合反应对单体浓度呈一级关系,表观活化能为39.1KJ/mol。  相似文献   

5.
用Fe(acac)3-Al(I-Bu)3-α,α′-联吡啶(acac=乙酰丙酮)催化邻苯二甲酸酐(PA)与环氧丙烷(PO)、邻苯二甲酸酐与环氧氯丙烷(ECH)开环交替共聚 . 研究了Fe/Al、 Fe/α,α′-联吡啶摩尔比对聚合的影响; 用核磁共振技术研究了共聚物的交替度, 测得共聚物中邻苯二甲酸酐含量达46%以上. 共聚反应动力学研究表明, 共聚反应速度与单体浓度及催化剂浓度均呈一级关系; PA-PO、 PA-ECH的表观活化能分别为109.3和99.7 kJ/mol.  相似文献   

6.
本文探索了乙烯/丙烯/极性单体三元共聚物的合成方法.乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚物由于分子中引入了ω-Cl-α-乙烯基极性单体,改变了乙烯丙烯共聚物的化学惰性.我们采用催化剂Cat.L-Pd配位催化乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚合,合成了极性三元无规共聚物.探讨了催化剂结构、聚合条件对三元共聚合行为的影响,并优化了聚合条件.采用红外光谱(FTIR)、核磁共振碳谱(氢谱)(~(13)C(~1H)NMR)、示差扫描量热(DSC)和高温凝胶渗透色谱(GPC)等方法研究了共聚物的结构与性能.FTIR与~(13)C(~1H)NMR结果表明,催化剂Cat.L-Pd能够有效催化乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚合,共聚物中ω-氯代极性单体的插入量达3.6 mol%.极性单体不发生均聚合反应,但能够有效参与乙烯和丙烯的共聚合反应,形成三元无规共聚物.丙烯能够发生均聚合反应,但是不能形成聚丙烯长链段,主要发生乙烯与丙烯共聚合反应.乙烯最易发生聚合反应,并能够形成较长链段的聚乙烯.共聚物的Mw高于2×10~5g/mol.分子量分布在1.6~3.0,说明该类催化剂催化乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚合行为遵循单中心聚合机理.  相似文献   

7.
《高分子学报》2021,52(5):514-521
链穿梭聚合作为一锅法合成多嵌段聚合物的策略引起人们的研究兴趣.然而,其催化体系的构建难度大,导致实现链穿梭聚合的单体有限.本文基于三异丁基铝作链转移剂时,稀土金属配合物1催化乙烯/苯乙烯共聚合,得到富含乙烯/苯乙烯交替序列的共聚物且链转移效率接近100%的发现,开展了乙烯/苯乙烯链穿梭聚合的研究.首先探索配合物2催化乙烯/苯乙烯共聚合,发现所得共聚物中苯乙烯结构单元的含量4%,因此考察了在不同烷基铝用量时,配合物2催化乙烯均聚合的行为,发现所得聚乙烯的分子量随着[Al]_0/[2]_0增加呈指数降低,幂指数为-0.778,表明链转移效率低于100%.采用1/2/Al~iBu_3三元体系催化乙烯/苯乙烯共聚合得到双峰分布的聚合物,说明链穿梭聚合没有实现.进一步筛选发现,配合物3催化乙烯/苯乙烯共聚合时,随着[Al]_0/[3]_0增加,所得富间规聚苯乙烯序列共聚物的分子呈量指数降低,幂指数为-1.097,接近-1,表明链转移效率接近100%;同时催化体系的TOF值减小.当[Al~iBu_3]_0/[1+3]_0≥20时,1/3/Al~iBu_3三元体系催化乙烯/苯乙烯共聚合得到单峰分布的乙烯/苯乙烯交替序列和富间规聚苯乙烯序列的多嵌段共聚物,说明成功实现了乙烯/苯乙烯链穿梭共聚合.通过调节1和3的比例,有效调控了共聚物中乙烯/苯乙烯交替序列和富间规聚苯乙烯序列的组成.  相似文献   

8.
Fe(acac)3-Al(i-Bu)3对马来酸酐与茴香脑共聚的催化性能   总被引:6,自引:0,他引:6  
 研究了Fe(acac)3-Al(i-Bu)3(acac=乙酰丙酮)催化体系对马来酸酐(MA)与茴香脑(ANE)共聚反应的催化性能.动力学研究结果表明,MA与ANE共聚对单体的浓度呈一级反应,其表观活化能为31.0kJ/mol.用IR和13CNMR研究了共聚物的结构,结果表明聚合物是交替的,其中酸酐的含量为45.6%.用GPC测定了聚合物的分子量及其分布,结果表明分子量的分布较窄,PDI=1.19~1.42.用DTA研究了聚合物的热力学性质,其分解温度为501.1℃.  相似文献   

9.
以2-氯-2,4,4-三甲基戊烷(TMPCl)/TiCl4/质子捕捉剂(DtBP)为引发剂体系,引发异丁烯聚合,随后加入1,1-二(4-甲基苯基)乙烯作为封端剂稳定末端碳正离子,再引入四异丙醇钛(Ti(OiPr)4),降低Lewis酸性,继续引发α-甲基苯乙烯聚合,实现活性正离子聚合制备聚(异丁烯-b-α-甲基苯乙烯)嵌段共聚物.考察了α-甲基苯乙烯聚合时间对单体转化率、产物的dn/dc值、分子量及其分布的影响以及四异丙醇钛对聚合速率的影响.并通过体积排斥色谱法/紫外检测器/示差折光指数/多角激光光散射、1H-NMR以及DSC以对产物进行表征.实验结果表明,嵌段共聚物分子量分布窄(MWD≤1.2),单体转化率与分子量呈线性关系,聚合速率对单体浓度呈一级动力学关系,具有活性聚合的特征.Ti(OiPr)4能有效稳定活性中心,降低聚合速率.聚(异丁烯-b-α-甲基苯乙烯)嵌段共聚物的DSC测试发现明显的两个Tg,表明存在微相分离结构.  相似文献   

10.
 用Fe(acac)3-Al(i-Bu)3-α,α′-dipy(acac乙酰丙\r\n酮,dipy联吡啶)催化邻苯二甲酸酐与环氧环己烷开环交替共聚反应,\r\n研究了Fe/Al,Fe/α,α′-dipy摩尔比对聚合反应的影响.用核磁\r\n共振技术研究了共聚物的交替度,测得了共聚物中邻苯二甲酸酐含量达\r\n31%以上.用凝胶渗透色谱仪测得了共聚物的分子量.结果表明,共聚\r\n物分子量的分散度很窄.共聚反应动力学研究结果表明,共聚对单体的\r\n浓度呈一级反应,表观活化能为36.1kJ/mol.  相似文献   

11.
Nd-Al-α,α'-联吡啶催化体系催化丙烯酸甲酯聚合的研究   总被引:1,自引:0,他引:1  
研究Nd(naph)3-Al(i-Bu)3-α,α'-联吡啶(naph=环烷酸)催化体系催化丙烯酸甲酯的聚合, 用凝胶色谱研究聚合物分子量和分子量分布. 聚合反应对单体浓度呈一级关系, 表观活化能为49.34 kJ.mol-1.  相似文献   

12.
用 Fe(acac) 3- Al(i- Bu) 3- α,α′-联吡啶 (acac=乙酰丙酮 )催化邻苯二甲酸酐 (PA)与环氧丙烷 (PO)、邻苯二甲酸酐与环氧氯丙烷 (ECH)开环交替共聚 .研究了 Fe/Al、Fe/α,α′-联吡啶摩尔比对聚合的影响 ;用核磁共振技术研究了共聚物的交替度 ,测得共聚物中邻苯二甲酸酐含量达 46 %以上 .共聚反应动力学研究表明 ,共聚反应速度与单体浓度及催化剂浓度均呈一级关系 ;PA- PO、PA- ECH的表观活化能分别为 10 9.3和 99.7k J/mol  相似文献   

13.
研究了单茂钪(C_5Me_4SiMe_3)Sc(CH_2C_6H_4NMe2-o)_2催化异戊二烯(IP)与苯乙烯衍生物对氯苯乙烯(St-Cl)、4-二甲基硅氢苯乙烯(St-Si HMe_2)共聚合的性能,通过NMR、GPC和DSC对所获共聚物的微观结构和热性能进行表征分析.结果表明,在室温氯苯溶剂中,改变IP和苯乙烯衍生物的用量,单茂钪均可以催化IP与St-Cl、St-SiHMe_2共聚合,获得了组成可控(IP含量21 mol%~95 mol%)、高分子量(M_n=3.1×10~4~15.9×10~4)、窄分布(M_w/M_n=1.21~1.92)的IP/St-Cl和IP/St-SiHMe_2两类共聚物,共聚物中IP形成1,4-和3,4-结构单元,苯乙烯衍生物形成间规聚合结构.苯乙烯衍生物取代基的电负性直接影响共聚合活性和共聚物的序列分布.IP与St-SiHMe_2共聚合活性(10~5 g聚合物molSc~(-1) h~(-1))远高于IP与St-Cl共聚合活性(10~4 g聚合物mol Sc~(-1) h~(-1));相同共聚合条件下St-SiHMe_2的插入率高于St-Cl.单茂钪催化IP与St-Cl共聚合获得了梯度共聚物,IP/St-Cl共聚物具有源自聚IP链段的玻璃化转变温度(T_g=-1~5°C)和源自间规聚St-Cl链段的熔点(T_m=314~318°C).单茂钪催化IP与St-SiHMe_2共聚合获得无规共聚物,IP/StSiHMe_2共聚物具有一个T_g,该T_g值(12~82°C)随St-SiHMe_2含量(13 mol%~79 mol%)的增加而线性增加.  相似文献   

14.
本文研究了光照对二氯二茂钛催化丙烯腈与甲基丙烯酸甲酯共聚合反应的影响.以NMR谱法测定了共聚物中两种单体的组成比.用四种方法计算了竞聚率r1和r2.证明了在光照下二氯二茂钛对单体催化聚合过程为一种自由基机理.  相似文献   

15.
合成了5种单茂双烷基稀土配合物Cp'Ln(CH2C6H4NMe2-o)2(1:Cp'=C5Me4Si Me3,Ln=Sc;2:Cp'=C9H7,Ln=Sc;3:Cp'=C5H5,Ln=Sc;4:Cp'=C5H5,Ln=Lu;5:Cp'=C5H5,Ln=Y)在助剂[Ph3C]-[B(C6F5)4]的活化下,考察了稀土金属和配体结构对异戊二烯和苯乙烯的均聚合活性和立体选择性的影响规律.结果表明小空间位阻的单茂钪(C5H5)Sc(CH2C6H4NMe2-o)2(3)催化异戊二烯聚合时,聚合活性和顺式立体选择性较优;催化苯乙烯聚合时获得无规聚苯乙烯.因此选用单茂钪催化剂3/[Ph3C][B(C6F5)4],考察了其催化异戊二烯/苯乙烯共聚合的性能,高活性地获得了组成和分子量可控、分子量窄分布的异戊二烯/苯乙烯多嵌段共聚物.通过1H-NMR,13C-NMR,GPC以及DSC对共聚物进行分析表征,结果表明,通过调控苯乙烯与异戊二烯的加料比例,共聚物中苯乙烯摩尔含量可以在1%~75%间调控,聚苯乙烯嵌段为无规聚苯乙烯;共聚物中聚异戊二烯顺-1,4选择性均大于91%;通过调控单体与催化剂的比例,共聚物分子量(Mn)可以在3.5×104~8.3×104间调控,分子量分布保持窄分布(Mw/Mn=1.71~1.94).  相似文献   

16.
采用(C5Me4Si Me3)Sc(CH2C6H4NMe2-o)2(1)和(C5Me4Si Me3)Sc(CH2Si Me3)2(THF)(2)2种单茂钪催化剂,考察了其催化对氟苯乙烯均聚合以及与乙烯共聚合的性能,并通过1H-NMR、13C-NMR、GPC和DSC对所获聚合物的微观结构和热性能进行了分析.结果表明,单茂钪1可以催化对氟苯乙烯均聚合,获得间规聚合物,但聚合活性较低.采用单茂钪2,控制溶剂种类和用量可以获得间规和无规2类聚合物:控制对氟苯乙烯单体在氯苯溶剂中浓度低于2.4 mol/L,可获得间规聚对氟苯乙烯(rrrr≥99%,Tm≥319oC),且聚合活性高达105 g polymer molSc-1 h-1;控制对氟苯乙烯单体在氯苯溶剂中浓度高于4.8 mol/L或者选用氟苯做溶剂,可获得无规聚对氟苯乙烯;固定单体浓度调控对氟苯乙烯和催化剂的比例,可获得分子量(Mn)在3.10×104~2.08×105间调控的间规和无规聚对氟苯乙烯.在常压乙烯下,单茂钪1和2还可以催化对氟苯乙烯与乙烯共聚合,获得了组成(对氟苯乙烯含量41 mol%~88 mol%)和分子量(3.10?104~1.84?105)可控的两元共聚物,共聚合活性高达106 g polymer molSc-1 h-1.当共聚物中乙烯含量高于对氟苯乙烯含量时,共聚物仅有源自聚乙烯嵌段的熔点(119~126oC).当共聚物中对氟苯乙烯含量高于乙烯含量时,共聚物出现聚对氟苯乙烯嵌段;由单茂钪1获得聚对氟苯乙烯嵌段为间规结构,共聚物具有熔点(269~282oC)和玻璃化转变温度(Tg,79~82oC);单茂钪2获得聚氟苯乙烯嵌段为无规结构,共聚物仅有1个Tg(94~96oC).  相似文献   

17.
杨科  刘强  文帅  徐舒心  施晨琦 《高分子学报》2020,(4):355-365,I0003
以四氯化钛(TiCl4)、二氯乙基铝(AlEtCl2)、倍半铝(AlEt1.5Cl1.5)、三氯化铝(AlCl3)等路易斯酸为共引发剂,水或枯基醇(CumOH)为引发剂,在-80℃下的正己烷/二氯甲烷(V/V=6/4)的混合溶剂内,研究了异丁烯(IB)与对氯甲基苯乙烯(p-CMS)的正离子共聚合.利用示差凝胶渗透色谱仪(GPCRI)以及核磁氢谱(1H-NMR)对共聚物的表观分子量及分子量分布、共聚组成等进行分析,采用KelenTüd?s与Yezreielv-Brokhina-Roskin法计算了单体竞聚率,初步探讨了p-CMS与IB正离子共聚合的反应机理.结果表明,AlEtCl2、AlEt1.5Cl1.5、AlCl3均可催化大分子间的烷基化反应,产生凝胶;TiCl4作为共引发剂,可以得到无凝胶单峰分布共聚物;邻位氯甲基苯乙烯(o-CMS)不能参与共聚,p-CMS的共聚活性较低,IB与p-CMS的单体竞聚率为rIB=4.67,rp-CMS=0.70;随反应时间延长,共聚物中p-CMS的含量及共聚物分子量均逐渐增加;p-CMS单体自身几乎不参与引发,共聚到大分子链后,苄基氯缓慢参与引发,形成支化.提高共聚合温度至-60和-40℃,聚合速率降低,p-CMS的引发活性未发生明显变化.  相似文献   

18.
仇春阳  郭方  李杨  侯召民 《高分子学报》2016,(12):1662-1668
以(C5Me4Si Me3)Sc(CH2C6H4NMe2-o)2和[Ph3C][B(C6F5)4]组成的单茂钪催化体系,考察了其催化不同取代基团苯乙烯衍生物均聚合以及与乙烯共聚合的性能.结果表明单茂钪催化体系可以催化对甲基苯乙烯和对乙烯苯基二甲基硅烷均聚合,高活性(106g聚合物(mol Sc)-1h-1)地获得高间规聚合物;催化二乙烯基苯和乙烯苯基-1-丁烯聚合会发生不同程度的交联反应.在1.01×105Pa乙烯压力下,单茂钪催化体系分别催化对甲基苯乙烯、对乙烯苯基二甲基硅烷与乙烯与共聚合,获得了组成和分子量可控的乙烯/对甲基苯乙烯、乙烯/对乙烯苯基二甲基硅烷共聚物,共聚合活性高达106g聚合物(mol Sc)-1h-1.通过1H-NMR、13CNMR、GPC和DSC对共聚物组成、结构和热性能进行了分析表征.结果表明,在1.01×105Pa乙烯压力下改变苯乙烯衍生物的用量,共聚物中对甲基苯乙烯或对乙烯苯基二甲基硅烷的摩尔含量可以在8 mol%~55 mol%间调控,共聚物含有间规聚对甲基苯乙烯嵌段或间规聚对乙烯苯基二甲基硅烷嵌段、聚乙烯嵌段和乙烯-苯乙烯衍生物的链接序列,共聚物分子量(Mn)可以在3×104~16×104间调控,共聚物具有约127℃的熔点.  相似文献   

19.
研究了Fe(acac)3-Al(i-Bu)3(acac=乙酰丙酮)催化降冰片烯(NB)与甲基丙烯酸特丁酯(TBMA)共聚反应条件影响、第三组份影响及催化剂铁铝比影响.并用核磁共振、红外光谱方法研究了共聚物的组成,用凝胶渗透色谱分析了聚合物的分子量及分布.用扫描电镜研究了共聚物成膜性.  相似文献   

20.
从内聚能的角度建立了含共聚组成、序列不均匀性的共聚物分子量及分布理论,导出其计算式.将凝胶渗透色谱(GPC)与紫外吸收光谱(UV)和示差折光仪(DR)串接,测定苯乙烯(St)/N-苯基马来酰亚胺(PMI)共聚物的分子量.根据St/PMI共聚合原理,对St-PMI共聚物的分子量进行模型化,该模型能较好地预测引发剂、单体配比、转化率对共聚物分子量的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号