首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic behaviors of Pd (1.4 wt%) catalysts supported on CeO2-ZrO2-La2O3 mixed oxides with different Ce/Zr molar ratios were investigated for methanol decomposition. Nitrogen adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD) and Pd dispersion analysis were used for their characterization. Pd/Ce0.76Zr0.18 La0.06 O1.97 catalyst showed the highest BET surface area, best Pd dispersion capability and strongest metal-support interaction. Moreover, XPS showed that there was lattice defect oxygen or mobile oxygen. According to the result of O 1s measurements the lattice defect oxygen or mobile oxygen helped to maintain Pd in a partly oxidized state and increased the activity for methanol decomposition. The Pd/Ce0.76Zr0.18La0.06O1.97 catalyst exhibited the best activity. A 100% conversion of methanol was achieved at around 260℃, which was about 20-40 ℃ lower than other catalysts  相似文献   

2.
以铈锆固溶体(Ce0.5Zr0.5O2)修饰的高比表面积SiC为载体,采用两步浸渍法制备了Ni、Fe和Co基催化剂,研究了其在煤层气催化燃烧脱氧中的催化活性和稳定性. 利用X射线衍射(XRD)、X射线光电子能谱(XPS)、电感耦合等离子体质谱(ICP-MS)、高分辨透射电子显微镜(HRTEM)、比表面积(BET)、热重分析(TGA)和H2程序升温还原(H2-TPR)对催化剂进行了表征. 分析结果表明,Ni、Fe和Co部分进入Ce0.5Zr0.5O2固溶体晶格内部,导致催化剂体相形成更多的缺陷;同时Ce0.5Zr0.5O2固溶体有助于加速金属氧化物和金属之间氧化还原过程的进行,促进了氧吸附、传输和对甲烷的活化. 另外,SiC和Ce0.5Zr0.5O2固熔体良好的抗积碳性能,有效避免了催化剂在富甲烷反应气氛中因积碳而失活,从而使三种催化剂均具有优良的催化燃烧脱氧活性和稳定性. 其中,Co/Ce0.5Zr0.5O2/SiC活性最高,可在320 ℃活化催化甲烷,并在410 ℃实现完全脱氧.  相似文献   

3.
用沉积沉淀法合成两种不同系列的CeO2-ZrO2-La2O3混合氧化物(ZrO2和La2O3沉积CeO2粒子(标记为A-x)以及CeO2和La2O3沉积ZrO2粒子(标记为B-x)),并用作Rh催化剂的载体。XRD、拉曼、TPR、XPS和O2脉冲等表征结果显示出不同的沉积顺序将导致不同的结构和氧化还原性能,且B-x具有更高的氧迁移性、储氧能力和表面Ce浓度。当其负载Rh后,Rh/B-x催化剂具有更高的NO和CO转化率及N2选择性,且Ce的最佳含量为50at%。这可能归因于Rh负载于富铈表面形成更多有利于NO分解的表面Ce3+活性位。  相似文献   

4.
采用共沉淀法制备了Ce0.65Zr0.35O2(CZ)储氧材料, 在传统的水陈化体系中引入了乙醇, 研究了乙醇的加入对CZ储氧材料性能的影响. 对所制备样品进行了傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、粉末X射线衍射(XRD)、扫描电镜(SEM)、N2吸附-脱附、储氧量(OSC)和H2程序升温还原(H2-TPR)的表征, 并考察了以CZ储氧材料为载体制备的单钯催化剂的三效性能. 结果表明, 乙醇引入陈化体系对样品的结构和性能有显著影响. 以醇水共存体系陈化制备的CZ储氧材料颗粒小、堆积松散、孔径分布宽、孔容大, 具有优异的储氧性能和热稳定性, 经1000 °C焙烧后, 比表面积为29.3 m2·g-1, 储氧量仍高达520 μmol·g-1. 以此为载体制备的单钯催化剂, 空燃比操作窗口宽, 对C3H8、CO、NO的转化明显优于水陈化体系制备的储氧材料所制备的催化剂.  相似文献   

5.
We have been exploring the utilization of supported ceria and ceria–zirconia nano-oxides for different catalytic applications. In this comprehensive investigation, a series of Ce x Zr1−x O2/Al2O3, Ce x Zr1−x O2/SiO2 and Ce x Zr1−x O2/TiO2 composite oxide catalysts were synthesized and subjected to thermal treatments from 773 to 1073 K to examine the influence of support on thermal stability, textural properties and catalytic activity of the ceria–zirconia solid solutions. The physicochemical characterization studies were performed using X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HREM), thermogravimetry and BET surface area methods. To evaluate the catalytic properties, oxygen storage/release capacity (OSC) and CO oxidation activity measurements were carried out. The XRD analyses revealed the formation of Ce0.75Zr0.25O2, Ce0.6Zr0.4O2, Ce0.16Zr0.84O2 and Ce0.5Zr0.5O2 phases depending on the nature of support and calcination temperature employed. Raman spectroscopy measurements in corroboration with XRD results suggested enrichment of zirconium in the Ce x Zr1−x O2 solid solutions with increasing calcination temperature thereby resulting in the formation of oxygen vacancies, lattice defects and oxygen ion displacement from the ideal cubic lattice positions. The HREM results indicated a well-dispersed cubic Ce x Zr1−x O2 phase of the size around 5 nm over all supports at 773 K and there was no appreciable increase in the size after treatment at 1073 K. The XPS studies revealed the presence of cerium in both Ce4+ and Ce3+ oxidation states in different proportions depending on the nature of support and the treatment temperature applied. All characterization techniques indicated absence of pure ZrO2 and crystalline inactive phases between Ce–Al, Ce–Si and Ce–Ti oxides. Among the three supports employed, silica was found to stabilize more effectively the nanosized Ce x Zr1−x O2 oxides by retarding the sintering phenomenon during high temperature treatments, followed by alumina and titania. Interestingly, the alumina supported samples exhibited highest OSC and CO oxidation activity followed by titania and silica. Details of these findings are consolidated in this review.  相似文献   

6.
Ce0.65Zr0.25Y0.1O1.95 oxides were prepared by oxidation-coprecipitation method using ammonia and salvolatile as precipitators. The as-prepared samples were thermally treated at different temperatures and characterized by thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform-infrared (FT-IR) spectrometry, X-ray diffraction (XRD), and specific surface area measurements (BET). The results showed that the hydroxyl and carboxyl groups coexisted in the precipitate and a perfect solid solution was gradually formed with an increase in calcination temperature. The physisorbed water was lost from 100 to 170 °C, hydroxyl groups were removed from 250 to 300 °C, and the carboxyl groups were eliminated from 420 to 500 °C. A structure model was further proposed to understand the Ce0.65Zr0.25Y0.1O1.95 structure evolution process in depth.  相似文献   

7.
刘利  崔文权  邱发礼 《化学学报》2010,68(3):211-216
采用高温固相法合成了铈掺杂的K2La2Ti3O10催化剂, 利用X射线衍射(XRD)、紫外-可见漫反射(UV-vis DRS)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征. 考察了催化剂的可见光催化分解甲醇水溶液制氢的活性, 并对可见光催化机理进行了分析. 研究表明, 铈的掺杂没有改变K2La2Ti3O10的微晶结构, 并使催化剂粒径有所减小. 紫外可见漫反射分析表明禁带宽度为2.3 eV左右, 对可见光具有较高吸收. XPS表明La和Ti为+3和+4价, 而Ce则是+3和+4的混合价态. 担载2 wt% Pt后, 在可见光下光催化活性大大提高, 当铈的掺杂量为0.5 mol%(即Ce取代La的摩尔百分量)时, 光催化活性达到最大, 产氢速率为0.05 mmol/h; 光照5 h后产氢量为0.22 mmol, 而纯K2La2Ti3O10的产氢量只有0.037 mmol.  相似文献   

8.
The La2CuO4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO2 and H2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La2CuO4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La2CuO4 nanofiber, the bulk powder La2CuO4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H2 and CO2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La2CuO4 was much lower than that for the La2CuO4 bulk powder. The nanofibers were of higher specific surface area (105.0 m2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H2CO/HCO was stable and was reformed to CO2 and H2 by steam rather than being decomposed directly to CO and H2. Over the bulk counterpart, apart from the direct decomposition of H2CO/HCO to CO and H2, the intermediate H2COO might go through two decomposition ways: H2COO=CO+H2O and H2COO=CO2+H2.  相似文献   

9.
Carbon monoxide and H2 were allowed to react to produce methanol over Pd catalyst, and the effect of the supports was investigated. Among the supports examined, oxides of lanthanide such as La2O3, Pr6O11, Sm2O3, Gd2O3, and Dy2O3 exhibited considerable performance for the synthesis of methanol at low temperatures (250–300°C). The behavior of CeO2 was peculiar in activating Pd remarkably, while the selectivity to methanol was low and the main product was methane. In order to take advantage of the feature of CeO2, Pd was loaded on basic supports (ZnO, MgO, and TiBaO3) and a small amount of CeO2 was added. These CeO2-promoted Pd catalysts exhibited high performance to produce methanol at low temperatures.  相似文献   

10.
采用共沉淀法制备了Zr0.5Ti0.5O2载体材料,将其掺杂在CeO2-Al2O3 (CA)基催化剂中, 并对其催化活性进行了超临界裂解测试, 采用全自动吸附仪、X射线衍射(XRD)、透射电镜(TEM)、程序升温脱附(TPD)等方法对催化剂进行了表征. 实验结果表明, 催化剂能够明显降低裂解反应的温度, 600 ℃ CA基催化剂产气率是热裂解的2.8倍, 掺杂Zr0.5Ti0.5O2载体材料的CA基催化剂是热裂解的4.0倍, 650 ℃时, 掺杂Zr0.5Ti0.5O2载体材料的CA基催化剂热沉提高了0.55 MJ·kg-1. BET结果表明, 掺杂Zr0.5Ti0.5O2载体后催化剂出现双孔结构, 部分小孔的出现使得乙烯的选择性提高; NH3-TPD结果表明, 掺杂Zr0.5Ti0.5O2载体材料后, 催化剂强酸位的酸量增加了4.0倍,催化剂表现出更强的表面酸性和更集中的强酸酸中心密度, 有利于裂解多产烯烃.  相似文献   

11.
铈和镧改性γ-Al2O3担载Pd催化剂的结构效应   总被引:1,自引:0,他引:1  
分别以镧-铈、铈-镧顺序浸渍和镧铈共浸渍的方式在γ-Al2O3载体上引入助剂La2O3和CeO2,然后担载Pd制备了一系列催化剂.以甲醇分解为探针反应,采用XRD、EXAFS和XPS对催化剂的体相和表面结构进行表征,用BET法测定比表面积,并进行了吸附态CO的FTIR研究.结果表明,La2O3容易进入CeO2的晶格中,促进了CeO2在γ-Al2O3上的分散.但不同的La2O3、CeO2加入方式对活性组分Pd在改性载体上的分散度、优势暴露面及其与CeO2之间的相互作用产生不同的影响.关联甲醇分解性能测试结果说明,Pd在载体上的高度分散以及Pd和CeO2之间通过界面产生的强相互作用是催化剂具有高活性的关键.  相似文献   

12.
The Ni/Mo/SBA-15 catalyst was modified by La2O3 in order to improve its thermal stability and carbon deposition resistance during the CO2 reforming of methane to syngas. The catalytic performance, thermal stability, structure, dispersion of nickel and carbon deposition of the modified and unmodified catalysts were comparatively investigated by many characterization techniques such as N2 adsorption, H2-TPR, CO2-TPD, XRD, FT-IR and SEM. It was found that the major role of La2O3 additive was to improve the pore structure and inhibit carbon deposition on the catalyst surface. The La2O3 modified Ni/Mo/SBA-15 catalyst possessed a mesoporous structure and high surface area. The high surface area of the La2O3 modified catalysts resulted in strong interaction between Ni and Mo-La, which improved the dispersion of Ni, and retarded the sintering of Ni during the CO2 reforming process. The reaction evaluation results also showed that the La2O3 modified Ni/Mo/SBA-15 catalysts exhibited high stability.  相似文献   

13.
Carbon dioxide reforming (CDR) of methane to synthesis gas over supported nickel catalysts has been reviewed. The present review mainly focuses on the advantage of ceria based nickel catalysts for the CDR of methane. Nickel catalysts supported on ceria–zirconia showed the highest activity for CDR than nickel supported on other oxides such as zirconia, ceria and alumina. The addition of zirconia to ceria enhances the catalytic activity as well as the catalyst stability. The catalytic performance also depends on the crystal structure of Ni–Ce–ZrO2. For example, nickel catalysts co-precipitated with Ce0.8Zr0.2O2 having cubic phase gave synthesis gas with CH4 conversion more than 97% at 800 °C and the activity was maintained for 100 h during the reaction. On the contrary, Ni–Ce–ZrO2 having tetragonal phase (Ce0.8Zr0.2O2) or mixed oxide phase (Ce0.5Zr0.5O2) deactivated during the reaction due to carbon formation. The enhanced catalytic performance of co-precipitated catalyst is attributed to a combination effect of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and the finely dispersed nano size NiO x crystallites, resulting in the intimate contact between Ni and Ce0.8Zr0.2O2 particles. The Ni/Ce–ZrO2/θ–Al2O3 also exhibited high catalytic activity during CDR with a synthesis gas conversion more than 97% at 800 °C without significant deactivation for more than 40 h. The high stability of the catalyst is mainly ascribed to the beneficial pre-coating of Ce–ZrO2 resulting in the existence of stable NiO x species, a strong interaction between Ni and the support, and an abundance of mobile oxygen species in itself. TPR results further confirmed that NiO x formation was more favorable than NiO or NiAl2O4 formation and further results suggested the existence of strong metal-support interaction (SMSI) between Ni and the support. Some of the important factors to optimize the CDR of methane such as reaction temperature, space velocity, feed CO2/CH4 ratio and H2O and/or O2 addition were also examined.  相似文献   

14.
The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1 Al0.7Oδcatalyst. The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1 Al0.7Oδautothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature, and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδwas found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts. Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ.  相似文献   

15.
ZrxCe1-xO2催化剂催化湿式氧化乙酸的活性研究   总被引:1,自引:0,他引:1  
王建兵  祝万鹏  杨少霞  周云瑞 《化学学报》2006,64(15):1537-1542
采用共沉淀法制备了ZrxCe1-xO2催化剂, 利用BET, XRD和XPS对其进行了表征, 并研究了催化剂催化湿式氧化乙酸的活性. 结果表明: Zr和Ce摩尔比为1∶9的催化剂催化湿式氧化乙酸时具有最好的活性, 当乙酸溶液的初始化学需氧量(COD)为5000 mg/L, 反应温度为230 ℃, 压力为5 MPa时, 120 min后, COD的去除率为76% . 催化剂具有良好的活性是因为在CeO2中加入Zr能够增大催化剂的比表面积和表面缺陷氧的含量, 并最终加快了HO2•自由基的产生, 从而提高了催化剂的活性.  相似文献   

16.
宋华  董鹏飞  张旭 《物理化学学报》2010,26(8):2229-2234
通过向SO2-4 /ZrO2催化剂中同时引入适量的Pt和Al2O3, 制备出了具有较高催化性能和稳定性的Pt-SO2-4 /ZrO2-Al2O3型固体超强酸催化剂. 以正戊烷异构化反应为探针, 考察了Al含量对催化剂性能的影响; 并采用X射线衍射(XRD)、比表面积测定(BET)、红外(IR)光谱、程序升温还原(TPR)、热重-差热分析(TG-DTA)和氨-程序升温脱附(NH3-TPD)手段对催化剂进行了表征. 结果表明, Al能够提高ZrO2的晶化温度, 抑制硫的分解, 增加催化剂的比表面积, 增强硫氧键的结合, 提高催化剂的还原性能, 增加催化剂的酸强度和酸总量. 当Al2O3含量(质量分数, w)为5.0%时, Pt-SO2-4 /ZrO2-Al2O3固体超强酸催化剂的催化活性最好, 在100 h内异戊烷收率可稳定在52.0%以上, 选择性在98.2%以上.  相似文献   

17.
In this study,the effect of Nb loading on the catalytic activity of Ce_(0.75)Zr_(0.25)O_2-supported Ni catalysts was studied for methane partial oxidation.The catalysts were characterized by BET,H_2 chemisorption,XRD,TPR,TEM and tested for methane partial oxidation to syngas in the temperature range of 400-800℃at atmospheric pressure.The results showed that the activity of methane partial oxidation on the catalysts was apparently dependent on Nb loading.It seemed that the addition of Nb lowered the catalytic activity for methane partial oxidation and increased the extent of carbon deposition. This might be due to the strong interaction between NiO and Nb-modified support and reduction of surface oxygen reducibility.  相似文献   

18.
Tao Lin  Wei Li  Maochu Gong  Yao Yu  Bo Du  Yaoqiang Chen   《Acta Physico》2007,23(12):1851-1856
TiO2,ZrO2-TiO2,andZrO2-TiO2-CeO2 were prepared by co-precipitation method and characterized by X-ray diffraction (XRD), specific surface area measurements (BET), temperature programmed desorption (NH3-TPD), oxygen storage capacity (OSC), and temperature programmed reduction (H2-TPR). The results showed that ZrO2-TiO2-CeO2 exhibited large number of surface strong acid, possessed some oxygen storage capacity, and strong redox property. The three materials were used as supports and the monolith catalysts were prepared with 1% (w) V2O5 and 9% (w)WO3 for selective catalytic reduction (SCR) of NO with ammonia in the presence of excessive O2, and the results of catalytic activity showed that the catalyst used ZrO2-TiO2-CeO2 as support yielded nearly 100% NO conversion at 275 °C at a gas hourly space velocity (GHSV) of 10000 h−1, and it had the best catalytic activity and showed great potential for practical application.  相似文献   

19.
In this work, the metal dispersion of the Pd/Al2O3 catalyst prepared by sol-gel method is improved by an adequate optimisation of the preparative variables. First, the gelation temperature and the ageing time are selected, in order to avoid the reduction of the metal precursor (palladium acetylacetonate, Pd(acac)2) by the solvent (sec-butanol, sB). The metal sintering effect on the catalysts treated in oxygen at 500°C is then minimized when the alumina pore size is controlled by the variation of the alumium alkoxide (AsB) concentration and the acetic acid amount ([AcA]/[AsB]). The appearance of new palladium particles on the alumina surface and the matching between the particle diameters and the pore sizes were also effective for the metallic surface area improvement on the samples treated in oxygen at 800°C. Compared to the reference catalysts, the higher metal dispersion obtained on the sol-gel ones was the determinant factor for their higher catalytic activity in methane combustion.  相似文献   

20.
In this paper, the CeXZr1-XO2-supported PdO catalysts were prepared and the effect of Ce/Zr ratio on catalytic activity for CO and methane oxidation was studied, both activity and the reduction behavior of catalyst depend on the Ce/Zr ratio. The reduction behavior of those catalysts was characterized by means of TPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号