首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The review provides a comprehensive survey of the recent applications of contact and contactless conductivity detection in capillary electrophoretic and chip electrophoretic analyses of a broad scale of compounds, from low-molecular-mass highly mobile small inorganic and organic ions, via medium-molecular-mass peptides and oligo- and polynucleotides up to high-molecular-mass biopolymers, proteins and nucleic acids fragments. The review presents also the recent developments in the construction of different types of conductivity detectors (detectors with galvanic contact of the sensing electrodes with the BGE and sample components, contactless conductivity detectors with capacitively coupled tubular and semitubular electrodes and combined conductivity/optical detectors) applied in the capillary electromigration methods performed in classical fused silica, polytetrafluorethylene, and polyetheretherketone capillaries or on glass and polymethylmethacrylate microchips. In addition, the principle and theoretical bases of conductivity detection in capillary electromigration techniques, zone electrophoresis, ITP, micellar EKC, and electrochromatography are briefly described.  相似文献   

2.
Chen R  Cheng H  Wu W  Ai X  Huang W  Wang Z  Cheng J 《Electrophoresis》2007,28(19):3347-3361
Capillary electrophoresis has become a widely useful analytical technology. Amperometric detection is extensively employed in capillary electrophoresis for its many inherent virtues, such as rapid response, remarkable sensitivity, and low cost of both detectors and instrumentations. Analysis of inorganic and small organic ions by capillary electrophoresis is an important research field. This review focuses on the recent developments of capillary electrophoresis coupled with amperometric detection for analysis of inorganic and small organic ions. Advancements in electrophoresis separation modes, amperometric detection modes, working electrodes, and applications of inorganic ions, amino acids, phenols, and amines are discussed.  相似文献   

3.
Zemann AJ 《Electrophoresis》2003,24(12-13):2125-2137
Capacitively coupled contactless conductivity detection (C(4)D) has become an accepted detection method in capillary electrophoresis (CE) for a variety of analytes. Advantages of this technique over optical detection modes and galvanic contact conductivity detection include great flexibility in capillary handling and rather simple mechanical parts and electronics, as it can be performed in an on-capillary mode. Furthermore, the detection principle can be used with capillaries made of other materials than fused silica (PEEK, Teflon), with chip-based separation technologies, or with capillaries having very small inner diameters. This review presents a discussion of the published literature on C(4)D for CE and capillary electrochromatography.  相似文献   

4.
A contactless conductometric detection (CCD) system for capillary electrophoresis (CE) with a flexible detection cell was applied for the simultaneous determination of small anions and/or cations in rain, surface and drainage water samples. The applied frequency, the amplitude of the input signal, the electrolyte conductivity and electrode distance were found to be the most significant factors affecting the detection sensitivity. 2-(N-Morpholino)ethanesulfonic acid/histidine-based (MES/His) electrolytes were used for direct conductivity detection of anions and cations, while ammonium acetate was selected for indirect conductivity determination of alkylammonium salts. For the simultaneous separation procedure, involving dual-opposite end injection, an electrolyte consisting of 20 mM MES/His, 1.5 mM 18-crown-6 and 20 microM cetyltrimethylammonium bromide provided baseline separation of 13 anions and cations in less than 6 min. The detection limits achieved were 7-30 micrograms/l for direct conductometric detection of various common inorganic cations and anions, excluding F- (62 micrograms/l) and H2PO4- (250 micrograms/l), and 35-178 micrograms/l for indirect conductometric detection of alkyl ammonium cations. The developed electrophoretic method with conductometric detection was compared to ion chromatography.  相似文献   

5.
毛细管电泳-荧光/非接触电导组合型检测器的研制   总被引:3,自引:0,他引:3  
杨丙成  谭峰  关亚风 《分析化学》2005,33(5):740-742
报道了一种毛细管电泳-荧光/非接触电导组合型检测器。该检测器共用非接触电导检测池,实现了双检测器响应同步。优化了非接触电导检测系统中激发电压信号及其频率;荧光检测是用发光二极管作为激发光源,用光纤收集并传输荧光信号至光电倍增管。用无机金属离子和异硫氰酸荧光素评价该体系,结果表明,该检测器达到了任一单类型检测器性能指标。  相似文献   

6.
A microfabricated thin glass chip for contactless conductivity detection in chip capillary electrophoresis is presented in this contribution. Injection and separation channels were photolithographed and chemically etched on the surface of substrate glass, which was bonded with a thin cover glass (100 μm) to construct a new microchip. The chip was placed over an independent contactless electrode plate. Owing to the thinness between channel and electrodes, comparatively low excitation voltage (20–110 V in Vp–p) and frequency (40–65 kHz) were suitable, and favorable signal could be obtained. This microchip capillary electrophoresis device was used in separation and detection of inorganic ions, amino acids and alkaloids in amoorcorn tree bark and golden thread in different buffer solutions. The detection limit of potassium ion was down to 10 μmol/L. The advantages of this microchip system exist in the relative independence between the microchip and the detection electrodes. It is convenient to the replacement of chip and other operations. Detection in different position of the channel would also be available.  相似文献   

7.
Aside from HPLC and GC, capillary electrophoresis (CE) is one of the most important techniques for high-performance separations in modern analytical chemistry. Its main advantages are the possibility of using different detection techniques, the possibility of in-capillary sample processing for preconcentration or derivatization, and ease of instrumental miniaturization down to the microfluidic scale. Those features are utilized in the separation of macromolecules in biochemistry and in genetic investigations, but they can be also used in determinations of inorganic ions in water analysis. This review, based on about 100 original research works, presents applications of CE methods in water analysis reported in recent decade, mostly regarding conductivity detection or indirect UV detection. The developed applications include analysis of high salinity sea waters, as well as analysis of other surface waters and drinking waters.  相似文献   

8.
Kubán P  Kubán P  Kubán V 《Electrophoresis》2003,24(9):1397-1403
A sensitive, rapid and inexpensive capillary electrophoretic method for the determination of Cr(III) and Cr(VI) species is presented. The method is based on the dual opposite end injection principle and contactless conductometric detection. The sample containing cationic and anionic species is injected into the opposite ends of the separation capillary and after the high voltage is applied, the analytes migrate towards the capillary center, where the cell of a contactless conductivity detector is placed. The method does not require any sample pretreatment, except dilution with deionized water. The separation of Cr(III), Cr(VI) and other common inorganic anions and cations is achieved in less than 4 min. The parameters of the separation electrolyte solution, such as pH and concentration of L-histidine, were optimized. Best results were achieved with electrolyte solution consisting of 4.5 mM L-histidine, adjusted to pH 3.40 with acetic acid. The detection limits achieved for Cr(III) and Cr(VI) were 10 and 39 microg.L(-1), respectively. The repeatability of migration times and peak areas was better than 0.3% and 2.8%, respectively. The developed method was applied to the analyses of rinse water samples from the galvanic industry. The results for the determination of Cr(III) and Cr(VI) were in good agreement with the results obtained by certified differential spectrophotometric method using diphenylcarbazide (CN 83 0520-40) and with the results for the total chromium concentrations determined by electrothermal atomic absorbance spectrometry (ET-AAS) and inductively coupled plasma-mass spectrometry (ICP-MS).  相似文献   

9.
Based on an efficient sample clean‐up and field‐amplified sample injection online preconcentration technique in capillary electrophoresis with contactless conductivity detection, a new analytical method for the sensitive determination of melamine in milk samples was established. In order to remove the complex matrix interference, which resulted in a serious problem during field‐amplified sample injection, liquid–liquid extraction was utilized. As a result, liquid–liquid extraction provides excellent sample clean‐up efficiency when ethyl acetate was used as organic extraction by adjusting the pH of the sample solution to 9.5. Both inorganic salts and biological macromolecules are effectively removed by liquid–liquid extraction. The sample clean‐up procedure, capillary electrophoresis separation parameters and field‐amplified sample injection conditions are discussed in detail. The capillary electrophoresis separation was achieved within 5 min under the following conditions: an uncoated fused‐silica capillary, 12 mM HAc + 10 mM NaAc (pH = 4.6) as running buffer, separation voltage of +13 kV, electrokinetic injection of +12 kV × 10 s. Preliminary validation of the method performance with spiked melamine provided recoveries >90%, with limits of detection and quantification of 0.015 and 0.050 mg/kg, respectively. The relative standard deviations of intra‐ and inter‐day were below 6%. This newly developed method is sensitive and cost effective, therefore, suitable for screening of melamine contamination in milk products.  相似文献   

10.
杨冰仪  莫金垣  赖容 《化学学报》2003,61(9):1461-1465
报道了一种双工作电极-双通道毛细管电泳电化学检测系统,实现电导和安培 同时检测或者安培与安培检测联用,使两种方法相互补充,发挥各自的优势。其中 ,工作电极与检测池的制作工艺简单,操作简便,通过不锈钢针管和毛细管作为套 管,无需三维微调装置即可简单实现双工作电极的准确放置及分离毛细管与工作电 极的准确对接,并根据分析体系的需要采用不同类型的工作电极和检测器;同时采 用复式滤波电路解决了不同检测器之间的电场叠加对输出信号的干扰问题。采用该 装置可以同时检测复杂体系中的电活性和惰性物质,或同时测定只能氧化或只能还 原的物质,还可以对具有氧化还原性质的物质进行纯度的确证。将该装置应用于实 际样品的测定,节约了分析时间,提高了分析速度,扩大了检测范围,结果令人满 意。  相似文献   

11.
Wu ZY  Fang F  Josserand J  Girault HH 《Electrophoresis》2007,28(24):4612-4619
On-column conductivity detection in capillary-chip electrophoresis was achieved by actively coupling the high electric field with two sensing electrodes connected to the main capillary channel through two side detection channels. The principle of this concept was demonstrated by using a glass chip with a separation channel incorporating two double-Ts. One double-T was used for sample introduction, and the other for detection. The two electrophoresis electrodes apply the high voltage and provide the current, and the two sensing electrodes connected to the separation channel through the second double-T and probe a potential difference. This potential difference is directly related to the local resistance or the conductivity of the solution defined by the two side channels on the main separation channel. A detection limit of 15 microM (600 ppb or 900 fg) was achieved for potassium ion in a 2 mM Tris-HCl buffer (pH 8.7) with a linear range of 2 orders of magnitude without any stacking. The proposed detection method avoids integrating the sensing electrodes directly within the separation channel and prevents any direct contact of the electrodes with the sample. The baseline signal can also be used for online monitoring of the electric field strength and electroosmosis mobility characterization in the separation channel.  相似文献   

12.
Ion chromatography is a new method for the determination of cations and anions in solution, based on ion-exchange separation of the analysed ions on a separator column, suppression of the background eluent signal on a suppressor column and finally, conductometric detection. Ion chromatography is characterized by high sensitivity, selectivity and reproducibility. This method now is widely applied to the determination of inorganic and organic ions in natural waters.  相似文献   

13.
Wang A  Fang Y 《Electrophoresis》2000,21(7):1281-1290
As a high efficiency separation technique, capillary electrophoresis has been widely used in various fields of analytical science. This review discusses the applications of electrochemical detection systems combined with capillary electrophoresis in pharmaceutical and biomedical analysis. These detection methods mainly involve amperometric detection but also include conductivity detection and potentiometric detection. Its applications in the field are divided into six parts, including catechol compounds, thiols, amino acids and peptides, carbohydrates, general pharmaceuticals, and other related compounds. A relatively detailed discussion is described for each compound under the current studied. On this basis, we have suggested several conceivable directions for capillary electrophoresis with electrochemical detection in the future.  相似文献   

14.
Novel CE methods have been developed on portable instrumentation adapted to accommodate a capacitively coupled contactless conductivity detector for the separation and sensitive detection of inorganic anions and cations in post‐blast explosive residues from homemade inorganic explosive devices. The methods presented combine sensitivity and speed of analysis for the wide range of inorganic ions used in this study. Separate methods were employed for the separation of anions and cations. The anion separation method utilised a low conductivity 70 mM Tris/70 mM CHES aqueous electrolyte (pH 8.6) with a 90 cm capillary coated with hexadimethrine bromide to reverse the EOF. Fifteen anions could be baseline separated in 7 min with detection limits in the range 27–240 μg/L. A selection of ten anions deemed most important in this application could be separated in 45 s on a shorter capillary (30.6 cm) using the same electrolyte. The cation separation method was performed on a 73 cm length of fused‐silica capillary using an electrolyte system composed of 10 mM histidine and 50 mM acetic acid, at pH 4.2. The addition of the complexants, 1 mM hydroxyisobutyric acid and 0.7 mM 18‐crown‐6 ether, enhanced selectivity and allowed the separation of eleven inorganic cations in under 7 min with detection limits in the range 31–240 μg/L. The developed methods were successfully field tested on post‐blast residues obtained from the controlled detonation of homemade explosive devices. Results were verified using ion chromatographic analyses of the same samples.  相似文献   

15.
A miniaturized analytical system for separating and detecting inorganic explosive residues, based on the coupling of a micromachined capillary electrophoresis (CE) chip with a contactless conductivity detector is described. The low electroosmotic flow (EOF) of the poly(methylmethacrylate) (PMMA) chip material facilitates the rapid switching between analyses of cations and anions using the same microchannel and run buffer (and without an EOF modifier), and hence offers rapid (< 1 min) measurement of seven explosive-related cations and anions. Experimental parameters relevant to the separation and detection processes have been optimized. Addition of a 18-crown-6 ether modifier has been used for separating the peaks of co-migrating potassium and ammonium ions. The ionic-explosive microchip system combines the distinct advantages of contactless conductivity detection with the attractive features of plastic CE microchips. The new microsystem offers great promise for monitoring explosive-related ions at the sample source, with significant advantages of speed/warning, efficiency, cost, or sample size.  相似文献   

16.
Evenhuis CJ  Guijt RM  Macka M  Haddad PR 《Electrophoresis》2004,25(21-22):3602-3624
The separation and detection of inorganic ions on microfluidic devices has received little attention since the 'lab-on-a-chip' concept has revolutionised the field of electrokinetically driven analysis. This review presents a summary and discussion of the published literature on inorganic analysis using microfluidic devices and includes sections on electromigration separation methods, namely isotachophoresis (ITP), capillary electrophoresis (CE), and hyphenated ITP-CE, together with a brief account of flow injection analysis. The review concludes with the authors' perspective on future directions for inorganic analysis on microfluidic devices.  相似文献   

17.
In this paper, two new electrochemical detection for capillary electrophoresis and its data processing by spline wavelet least square have been presented. An new type of on-column conductometric detection was assembled. A photo-couple separator was adopted in order to eliminate the influence of high voltage.  相似文献   

18.
Amperometric and conductometric detection are currently the two major electrochemical detection modes in capillary and chip electrophoresis. The ease of miniaturization and integration of electrochemical detection elements offers a high potential for the development of portable analytical devices based on electromigrative separations. The challenges and basic concepts of both detection principles in the context of capillary/chip electrophoresis are shortly introduced and milestones of the methodical developments are summarized from a historical perspective. Recent advances and applications are discussed with more detail. Particular attention is paid to new trends in this area of research such as measurements in short capillaries and the enormous progress and increased popularity of contactless conductivity detection. Correspondence: Frank-Michael Matysik, Institute of Analytical Chemistry, University of Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany  相似文献   

19.
1引言爆炸是恐怖袭击的常用手段。对痕量爆炸残留物进行高效检测,从而准确判断炸药的成分和种类,能够为侦破案件提供重要的线索和证据[1,2]。近年来,毛细管电泳技术初步显示了其在爆炸物检验方面的巨大潜力[3~6]。本实验基于毛细管电泳间接紫外吸收检测[7,8]和胶束电动色谱[9],建立了痕量爆炸残余物的系统分析检验方法,通过对爆炸瞬间产生的痕量  相似文献   

20.
非水毛细管电泳进展   总被引:4,自引:0,他引:4  
熊建辉  张维冰  许国旺  张玉奎 《色谱》2000,18(3):218-223
 毛细管电泳通常是在以水为溶剂的缓冲溶液中进行的,事实上以纯有机溶剂替代水介质同样可以完成特殊样品的电泳分离,且存在诸多优点。以所建立的非水毛细管电泳方法为核心,总结了该方法中有机溶剂、电解质的选择原则及溶质-添加剂相互作用模式,并综述了它在无机离子、中性物质、有机酸等化合物分离分析中的应用。71篇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号