首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
唐爱东  黄可龙 《化学学报》2005,63(13):1210-1214
采用溶胶-凝胶法, 通过锂盐、镍盐、钴盐与锰盐生成锂镍钴锰氧化合物的前驱体, 随后采用高温固相法合成了Li(Mn1/3Co1/3Ni1/3)O2. 借助于X射线光电子能谱(XPS)、X射线衍射(XRD)、循环伏安(CV)及充放电测试等现代测试手段研究了材料的晶型结构、离子价态及电化学性能. 前驱体经950 ℃煅烧可获得晶体结构完整、晶胞参数为a=0.2864 nm, c=1.4235 nm的六方层状Li(Mn1/3Co1/3Ni1/3)O2化合物; XPS结果表明Li(Mn1/3Co1/3Ni1/3)O2化合物表面上的Mn, Ni和Co分别以Mn4+, Ni2+和Co3+存在; 材料的高温放电比容量比室温要高, 在55 ℃下, 在2.5~4.6 V电压范围内, 电流密度为28 mA/g时材料首次放电容量195 mAh/g, 循环10次后容量保持在170 mAh/g; 循环伏安曲线上3.7 V和4.4 V的氧化还原过程对应于Ni2+/4+和Co3+/4+氧化还原电对的反应.  相似文献   

2.
将聚氧化乙烯(PEO)和二(三氟甲基磺酰)亚胺锂(LiTFSI)混合(固定EO/Li摩尔比为13)后, 采用溶液浇注法制备了一系列不同Li1.5Al0.5Ge1.5(PO4)3(LAGP)与PEO质量比的LAGP-PEO(LiTFSI)固体复合电解质体系. 结合电化学阻抗法、 表面形貌表征以及与惰性陶瓷填料(SiO2, Al2O3) 性能的对比分析, 探讨了LAGP在固体复合电解质中的作用机理以及锂离子的导电行为. 结果表明, 在以LAGP为主相的固体复合电解质中, PEO主要处于无定形态, 整个体系主要为PEO与LiTFSI的络合相、 LAGP与PEO(LiTFSI)相互作用形成的过渡相和LAGP晶相. 其中LAGP作为主要的导电基体不仅起到降低PEO结晶度、 改善两相导电界面的作用; 同时自身也可以作为离子传输的通道, 降低锂离子迁移的活化能, 从而使离子电导率得到提高. 当LAGP与PEO的质量比为6:4时, 固体复合电解质的成膜性能最好, 离子电导率最高, 在30 ℃时为2.57×10-5 S/cm, 接近LAGP的水平, 电化学稳定窗口超过5 V.  相似文献   

3.
石榴石型Li7La3Zr2O12(LLZO)离子导电性高,在全固态锂离子电池中具有潜在的应用价值。但目前报道的LLZO制备工艺烧结温度范围宽,稳定性差,不利于宏量制备。本文以烧结产物物相结构和结晶度为考察指标,系统研究了锂源及用量、烧结温度、烧结时间等因素对LLZO成相的影响。结果表明,当以分解温度较低的锂盐(LiNO3)为原料时,在800℃下得到四方相LLZO,900℃时呈立方相LLZO;当以分解温度较高的锂盐(Li2CO3)为原料时,900℃才能形成四方相LLZO。烧结时间的延长和温度升高均会导致锂的挥发损失,影响LLZO物相的形成。通过增加锂盐用量、改变烧结前驱体聚集特性与烧结时间可抑制锂的挥发。当以过量10%的Li2CO3为原料时,900℃烧结6h可稳定的得到立方相LLZO。该研究较为系统地分析了制备工艺对LLZO成相的影响,可为LLZO宏量稳定制备提供借鉴。  相似文献   

4.
新型含氧亚甲基和亚胺桥键的液晶化合物的合成及介晶性   总被引:3,自引:0,他引:3  
报道一类新的、结构通式为MeO2CC6H4CH2OC6H4CH=NC6H4Y, Y=OCnH2n+1, Me, Cl, Br, NO2, H 的棒状液晶化合物的合成. 通过DSC和偏光显微镜对其介晶性研究发现, 除Y=H外, 这些化合物均具有介晶性. 当Y为非烷氧基时, 呈向列相液晶; 当Y为较短的烷氧基时(n=1~3), 液晶化合物具有向列相(N); Y为较长烷氧基时(n=4~16 ), 液晶化合物只有近晶B相(SB)和近晶A相(SA); SA-I相变的熵变随烷氧链原子数而奇-偶变化, 但与N-I相变的“奇-偶效应”相反.  相似文献   

5.
通过改性Pechini方法合成不同Co含量的富锂正极材料Li[Li(1/3-x/3)CoxMn(2/3-x/3)]O2 (x=0.4, 0.5, 0.6). XRD研究结果表明, 不同Co含量的富锂正极材料均具有良好的层状结构, 结晶度高. 电化学测试结果表明材料的初始容量随Co含量的增加而增加, 在200~220 mAh/g之间. 其中x=0.4材料的循环性能最佳, 在0.5 C (100 mA/g)时, 循环50次后的容量保持率为75%. 容量微分曲线研究结果表明在3.5 V以下出现了Mn4+/Mn3+的还原峰, 并随循环次数的增加峰面积加大. 循环过程的XRD研究表明, 随着充放电次数的增加, 富锂正极材料的层状结构逐渐向尖晶石相转变, 且有杂质相MOx (M=Co, Mn)生成, 导致容量衰减.  相似文献   

6.
车海英  杨军  吴凯  王久林  努丽燕娜 《化学学报》2011,69(11):1287-1292
系统研究了电解质锂盐对磷酸铁锂电极高温性能的影响, 并探讨了相关的作用机理. 差示扫描量热仪测试显示, 与LiPF6相比, 二(三氟甲基磺酰)亚胺锂(LiTFSI)和LiBF4具有对水份稳定且热稳定性好的优点, 更适合高温条件下使用. 应用等离子体发射光谱考察LiFePO4在55 ℃和不同电解液体系中铁离子溶出程度, 结果表明, 在LiTFSI和无氟锂盐电解液中LiFePO4的铁很少溶出, 而在LiPF6电解液中却溶出严重, 且FePO4的铁溶出量高于LiFePO4. 循环伏安和光学显微镜测试结果显示少量LiBF4的加入能有效抑制LiTFSI对集流体铝箔的腐蚀. 以LiTFSI和LiBF4作为混合锂盐配成的电解液能显著改善LiFePO4/Li电池的高温电化学性能, 在55 ℃和1 C倍率下循环40次后放电比容量达147.7 mAh/g.  相似文献   

7.
陈红梅  赵可清  胡平  汪必琴 《化学学报》2007,65(14):1368-1376
全氟烃链的憎氟效应(fluorophobic effect)可有效地促使棒状分子形成近晶相, 并稳定液晶相. 为进一步探讨氟效应对盘状分子介晶性的影响, 合成了一系列全氟酯链的苯并菲化合物C18H6(OCnH2n+1)5(OCOC2H4C6F13) (a), 以及另一系列相对应的不含氟化合物C18H6(OCnH2n+1)5(OCOC8H17) (b), n=4~9. DSC检测和偏光显微镜观察显示两类化合物都为柱状相热致型液晶. 化合物a与相对应的化合物b比较, 其熔点和清亮点上升, 柱状相的热稳定性增强.  相似文献   

8.
汪必琴  简忠保  赵可清  余文浩  胡平 《化学学报》2007,65(22):2570-2576
报道含亚胺和胆甾烯基不对称液晶二聚体化合物XC6H4N=CHC6H4OC10H20COOCh* [X=OCnH2n+1, (n=1~12,14), F, Cl, Br, CH3] (1a~1q)的合成及液晶性. 目标化合物通过600 MHz 1H NMR和元素分析进行了结构表征. 其介晶性通过偏光显微镜(POM)和差示扫描量热计(DSC)进行了研究. 结果显示: 所有化合物都具有胆甾相(N*). 对于烷氧基系列(X=OCnH2n+1), 有部分化合物还呈现了近晶A相(SA), 且随着末端烷氧链长度的增加, 化合物的清亮点呈现缓慢下降的趋势, 而化合物从胆甾相到各向同性液体转变的熵变(ΔSN*→I)则呈现奇-偶效应. 同时我们对比研究了取代基X对胆甾相稳定性的影响, 发现取代基X对胆甾相的稳定性高低顺序为: MeO>Cl>Br>Me>F. 这些结果证实了末端取代基的改变对化合物的相转变温度以及介晶性质有显著的影响.  相似文献   

9.
采用溶液聚合方法,以甲基丙烯酸甲酯、聚乙二醇单甲醚甲基丙烯酸酯为共聚单体,制备一种新型无规梳状聚合物,并研究了一系列掺杂不同含量高氯酸锂全固态聚合物电解质的导电性能.FTIR、1H-NMR结果证实了新型梳状聚合物具有无规梳状结构特征.DSC和XRD结果表明了聚合物电解质主要是以无定型状态存在.SEM和FTIR结果证实了当锂盐含量低于16 wt%时,锂盐在聚合物中具有良好的溶解性,ClO4-主要以单离子状态存在,此时聚合物电解质30℃离子电导率达到最大值,为4.81×10-5S/cm.当锂盐含量超过16wt%时,Li+ClO4-离子对含量明显增多,表明了锂盐溶解性能下降,同时聚合物电解质离子电导率显著下降,这主要是锂盐增加导致离子的缔合增强,不利于离子的传导所致.  相似文献   

10.
利用PVA侧链上的羟基的化学活性, 采用超支化聚胺-酯对改性纳米SiO2和PVA接枝改性, 并加入不同锂盐,制备了SiO2-g-HBPAE/PVA-g-HBPAE超支化/梳状复合型聚合物电解质, 利用SEM观察了纳米粒子在基体中的分散情况, 采用DSC、拉伸实验以及介电谱研究了锂盐种类及添加量对复合体系性能的影响. 结果表明, 超支化接枝改善了SiO2和基体的界面相容性; 磺酸类锂盐在复合材料中表现出自增塑现象, 材料的玻璃化转变温度(Tg)大幅度下降; LiClO4在基体中的离解能力强于LiCF3SO3和 LiN(SO3CF3)2; 当LiCF3SO3添加量为20 %(by mass, 下文同)时, 聚合物电解质的室温电导率达到最大值2.58×10-6 S•cm-1.  相似文献   

11.
A novel single lithium‐ion (Li‐ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI?), and high‐molecular‐weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass‐transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li‐ion transference number (tLi+=0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li‐ion conductivity as high as 1.35×10?4 S cm?1 at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries.  相似文献   

12.
Polymer–ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high‐performance all‐solid‐state rechargeable batteries. Composite electrolytes have been prepared with cubic‐phase Li7La3Zr2O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high‐resolution solid‐state Li NMR, we are able to track Li ion pathways within LLZO‐PEO composite electrolytes by monitoring the replacement of 7Li in the composite electrolyte by 6Li from the 6Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO‐LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting.  相似文献   

13.
Effects of a strong‐interacting amorphous polymer, poly(4‐vinyl phenol) (PVPh), and an alkali metal salt, lithium perchlorate (LiClO4), on the amorphous and crystalline domains in poly(ethylene oxide) (PEO) were probed by differential scanning calorimetry (DSC), optical microscopy (OM), and Fourier transform infrared spectroscopy (FTIR). Addition of lithium perchlorate (LiClO4, up to 10% of the total mass) led to enhanced Tg's, but did not disturb the miscibility state in the amorphous phase of PEO/PVPh blends, where the salt in the form of lithium cation and ClO anion was well dispersed in the matrix. Competitive interactions between PEO, PVPh, and Li+ and ClO ions were evidenced by the elevation of glass transition temperatures and shifting of IR peaks observed for LiClO4‐doped PEO/PVPh blend system. However, the doping distinctly influenced the crystalline domains of LiClO4‐doped PEO or LiClO4‐doped PEO/PVPh blend system. LiClO4 doping in PEO exerted significant retardation on PEO crystal growth. The growth rates for LiClO4‐doped PEO were order‐of‐magnitude slower than those for the salt‐free neat PEO. Dramatic changes in spherulitic patterns were also seen, in that feather‐like dendritic spherulites are resulted, indicating strong interactions. Introduction of both miscible amorphous PVPh polymer and LiClO4 salt in PEO can potentially be a new approach of designing PEO as matrix materials for electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3357–3368, 2006  相似文献   

14.
Highly conductive, crystalline, polymer electrolytes, β‐cyclodextrin (β‐CD)–polyethylene oxide (PEO)/LiAsF6 and β‐CD–PEO/NaAsF6, were prepared through supramolecular self‐assembly of PEO, β‐CD, and LiAsF6/NaAsF6. The assembled β‐CDs form nanochannels in which the PEO/X+ (X=Li, Na) complexes are confined. The nanochannels provide a pathway for directional motion of the alkali metal ions and, at the same time, separate the cations and the anions by size exclusion.  相似文献   

15.
Solid polymer electrolytes for Lithium batteries applications are commonly prepared by dissolving a lithium salt in poly(ethylene oxide) (PEO)‐based materials. Their performance is strongly related to the structure of the polymer network. In this article, a new salt‐in‐polymer electrolyte prepared by the fast and easy radical photopolymerization of PEO acrylate oligomers is studied. Here, a difunctional monomer used as the polymer backbone is copolymerized with monofunctional monomers of different length and concentration. Thus, the crosslinking density and conductivity are changed. These systems are investigated by a detailed NMR study yielding local dynamics and mass transport by temperature‐dependent spin‐lattice relaxation time and PFG‐NMR diffusion measurements for different nuclei (7Li and 19F). The results indicate that a sufficiently long monofunctional oligoether improves the properties, since it provides a lower crosslinking density as well as more coordinating oxygens for the Li ions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1571–1580  相似文献   

16.
Solid polymer electrolytes of PEO/LiClO4 and PEO/LiTFSI solution casting films were prepared with the EO/Li molar ratio of 3: 1, and the effect of relative humidity (RH) on their complex structures were characterized. It is shown that the complex structures were barely changed at RH ≤ 10% while severe differences were shown at RH ≥ 20%. The reason was attributed to the interactions of water with lithium salt, and the formation of PEO–Li+–H2O decreased the interactions between PEO and lithium ions. Furthermore, it was shown that the hydrated samples after heat treatment were still strikingly different in characters from their anhydrous precursors, and the type of lithium salt affected the final structures. It was found that the structure of (PEO)3LiClO4 (30% RH) was hardly changed after heating; however, an irreversible compositional transition was discovered in (PEO)3LiTFSI (30% RH) in which case (PEO)2LiTFSI was formed.  相似文献   

17.
Solid polymer electrolytes are attractive materials for use as battery separators. Here, a molecular weight series of polystyrene–polyethylene oxide (PEO) multiblock copolymers was synthesized by the thiol–norbornene click reaction. The subsequent materials were characterized both neat and with a lithium bis‐(trifluoromethane)sulfonimide salt loading [(Li)/(EO)] of 0.1. In general, neat samples demonstrated crystallinity scaling with PEO content. Lithium ion‐containing samples had broad scattering peaks, half of which displayed disordered scattering, even at the lowest block molecular weights (polystyrene = 1 kg/mol, PEO = 1 kg/mol). Fitting of disordered scattering data, using the random phase approximation, yielded χRPA and Rg values that were compared with recent predictive work by Balsara and coworkers. The predictions were accurate near the volume fraction fPEO = 0.5 but deviated symmetrically with volume fraction asymmetry. Samples were also analyzed by electrochemical impedance spectroscopy for their potential to conduct lithium ions. Samples with fPEO ≥ 0.5 demonstrated robust conductivity, whereas samples below this volume fraction conducted very poorly, with one exception (fPEO = 0.24). This work expanded upon our recently reported approach to multiblock copolymer synthesis, demonstrating the improved access of materials to further our fundamental understanding of multiblock copolymers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This contribution presents an overview of the study of the effect of stretching on semicrystalline and amorphous complexes of poly(ethylene oxide) (PEO) with different salts, such as lithium iodide, lithium trifluoromethane-sulfonate, lithium hexafluoroarsenate, lithium bis(oxalato)borate and lithium trifluoromethanesulfonimide. In spite of the conventional belief that ion transport in polymer electrolytes (PE) is mediated primarily by polymer segmental motion, we suggest that ion transport occurs preferentially along the PEO helical axis, at least in the crystalline phase. It was found that the more amorphous the PE, the less its lengthwise conductivity is influenced by stretching. It is suggested that the rate-determining step of ion conduction in semicrystalline LiX:P(EO)20, polymer electrolytes below the melting point (Tm) is “interchain” hopping.  相似文献   

19.
The addition of plasticizer to the polyethylene oxide (PEO)-ammonium fluoride (NH4F) polymer electrolytes has been found to result in an increase in conductivity value and the magnitude of increase has been found to depend upon the dielectric constant of the plasticizer used. The addition of dimethylacetamide as a plasticizer with dielectric constant (?=37.8) higher than that of PEO (?∼5) results in an increase of conductivity by more than three orders of magnitude whereas the addition of diethylcarbonate as a plasticizer with dielectric constant (?=2.82) lower than that of PEO does not enhance the conductivity of PEO-NH4F polymer electrolytes. The increase in conductivity has further been found to depend upon the concentration of plasticizer, the concentration of salt in the polymer electrolyte as well as on the dielectric constant value of the plasticizer used. The conductivity modification with the addition of plasticizer has been explained on the basis of dissociation of ion aggregates formed in PEO-NH4F polymer electrolytes at higher salt concentrations.  相似文献   

20.
Three main chain thermotropic liquid crystalline (LC) azobenzene polymers were synthesized using the azobenzene twin molecule (P4P) having the structure Phenylazobenzene‐tetraethyleneglycol‐Phenylazobenzene as the AA monomer and diols like diethylene glycol, tetraethylene glycol (TEG), and hexaethylene glycol as the BB comonomer. Terminal ? C(O)OMe units on P4P facilitated transesterification with diols to form polyesters. All polymers exhibited stable smectic mesophases. One of the polymers, Poly(P4PTEG) was chosen to prepare composite polymer electrolytes with LiCF3SO3 and ionic conductivity was measured by ac impedance spectroscopy. The polymer/0.3 Li salt complex exhibited a maximum ionic conductivity in the range of 10?5 S cm?1 at room temperature (25 °C), which increased to 10?4 S cm?1 above 65 °C. The temperature dependence of ionic conductivity was compared with the phase transitions occurring in the sample and it was observed that the glass transition had a higher influence on the ionic conductivity compared to the ordered LC phase. Reversible ionic conductivity switching was observed upon irradiation of the polymer/0.3 Li salt complex with alternate UV and visible irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 629–641  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号