首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
在流动余辉装置中,利用镍金属表面催化氧原子复合的方法,产生了高浓度的亚稳态O~2(b^1∑^+~g)。采用准一级近似的方法,测定了O~2(b^1∑^+~g)被15种分子猝灭的速率常数,其大小在10^-12~10^-14cm^3·molecule^-1·s^-1数量级范围内,用电子-振动(E-V)能量转移模型分析了各种分子猝灭反应的机理,结果表明猝灭速率常数的大小与试剂分子中的C----H,N---H以及O-----H键的数目密切相关;同时,我们的结果也表明,分子的其它特性将对O~2(b)的猝灭反应也起着重要的作用。  相似文献   

2.
亚稳态分子猝灭机理的研究一直受到人们的极大重视。本文利用E-V传能模型对亚稳态分子PCl(b^1∑^+)的猝灭过程进行了定量处理。结果表明PCl(b^1∑^+)的猝灭是PCl(b^1∑^+→a^1Δ)跃迁和试剂分子端键X-Y振动能级近共振传能的结果, 与PCl(b^1∑^+→a^1Δ)跃迁的Franck-Condon因子及试剂分子端键X-Y振动的非谐性系数有关, 而且也受猝灭试剂分子极化率的影响。  相似文献   

3.
亚稳态分子猝灭机理的研究一直受到人们的极大重视。本文利用E-V传能模型对亚稳态分子PCl(b^1∑^+)的猝灭过程进行了定量处理。结果表明PCl(b^1∑^+)的猝灭是PCl(b^1∑^+→a^1Δ)跃迁和试剂分子端键X-Y振动能级近共振传能的结果, 与PCl(b^1∑^+→a^1Δ)跃迁的Franck-Condon因子及试剂分子端键X-Y振动的非谐性系数有关, 而且也受猝灭试剂分子极化率的影响。  相似文献   

4.
在流动余辉装置上,研究了SO(c1∑-)的猝灭动力学过程.获得了SO2,O2,CO2,N2,He,CS2,CH3OH,C2H5OH,C3H7OH,C4H9OH,CH3COCH3,C6H6 CH2Cl2,CH2Br,CHCl3,CCl4等16种分子与SO(c1∑-)发生猝灭反应的速率常数.初步分析表明:醇类分子CnH2n+1OH(n=1,2,3,4)中的C-H键的数目与其对SO(c1∑-)的猝灭速率成正比;CO2,N2等非极性无机小分子对SO(c1∑-)的猝灭作用不明显,强极性分子SO2对SO(c1∑-)的猝灭作用较强.卤代烷烃中的卤素原子的大小对SO(c1∑-)的猝灭过程发挥着较重要的作用;而氯代烷烃中氯原子的个数与猝灭速率之间的关系不明显.  相似文献   

5.
合成了新型Co(Ⅲ)配合物trans-[(en)~2(NO~2)Co(O~2CC~5H~5N)](ClO~4)~2, 并通过紫外可见光谱、红外光谱、元素分析和X射线单晶衍射分析进行了表征。同时分别以[Fe(CN)~6]^4^-和[Fe(CN)~5(H~2O)]^3^-作为还原剂, 考察了该配合物被还原的反应动力学行为。结果表明两反应体系分别按外配位界机理和内配位界机理进行电子传递。在25℃, Ⅰ=0.5mol·L^-^1,trans-[(en)~2(NO~2)Co(O~2CC~5H~5N)]^2^+/[Fe(CN)~6]^4^-反应体系的前驱配合物离子对形成常数Q~i~p=29mol^-^1·L, 电子转移速率常数k~e~t=2.4×10^-^4s^-^1,电子转移过程的活化焓△H^≠~e~t和活化熵△S^≠~e~t分别为1.2×10^2kJ·mol^-^1和5.0×10^2J·mol^-^1·K^-^1。在40℃, pH=8.0, Ⅰ=0.1mol·L^-^1,trans-[(en)~2(NO~2)Co(O~2CC~5H~4N)]^2^+/[Fe(CN)~5(H~2O)]^3^-反应体系前驱双核配合物分子内电子转移速率常数为7.0×10^-^5s^-^1。最后讨论了分子轨道对称性, 两金属中心氧化还原电势差等因素对电子转移速率的影响。  相似文献   

6.
王夺元  常静 《化学学报》1994,52(3):301-305
本文研究了迷迭香酚和鼠尾草酚对单重态氧的猝灭作用。实验证明迷迭香酚和鼠尾草酚在甲醇中猝灭单重态氧的总速率常数K~A分别为2.51×10^7和7.19×10^6mol^1.dm^-3.s^-1, 其中化学猝灭的速率常数k~r分别为1.27×10^7和9.82×10^5mol.dm^-3.s^-1, 相应的半猝灭浓度β值为4.6×10^-3和1.6×10^-2mol.dm^-3。这是一类有实用价值的高效抗氧化剂。  相似文献   

7.
本文研究了迷迭香酚和鼠尾草酚对单重态氧的猝灭作用。实验证明迷迭香酚和鼠尾草酚在甲醇中猝灭单重态氧的总速率常数K~A分别为2.51×10^7和7.19×10^6mol^1.dm^-3.s^-1, 其中化学猝灭的速率常数k~r分别为1.27×10^7和9.82×10^5mol.dm^-3.s^-1, 相应的半猝灭浓度β值为4.6×10^-3和1.6×10^-2mol.dm^-3。这是一类有实用价值的高效抗氧化剂。  相似文献   

8.
本文报导离子分子反应装置的建成并测量了O~++N_2反应的速率常数k.O~+离子由微波放电和电极电离产生,经快速流动,用四极质谱仪检测到.中性分子N_2经支管进入流动管,并与O~+离子反应,在温度为298 K 时,测得该反应速率常数为k=(2.50±0.52)×10~(-12)cm~3·molec~(-1)·s~(-1)(T=298 K)  相似文献   

9.
本文报道用四倍频YAG激光(266nm)光解CHBr3产生电子激发态CH(A,B)自由基和测量自发辐射CH(A,B→X)的时间分辨信号的方法测定了室温(290K)下CH(A,B)被醇类分子(乙醇、异丙醇、正丁醇、异戊醇和叔戊醇)猝灭的速率常数, 实验测定的CH(A)和CH(B)猝灭速率常数k~q^A和k~q^B(单位为10^-^1^0cm^3.molecule^-^1.s^-^1)值如下(误差为线性拟合的标准偏差):此外, 还从碰撞配合物模型出发, 就醇分子中OH基对猝灭速率常数的影响作了讨论。  相似文献   

10.
以谷胱甘肽为稳定剂,在水相中合成了ZnSe量子点(QDs)。基于Ag+对ZnSe QDs的荧光猝灭作用,建立了以QDs作为荧光探针测定微量Ag+的新方法。结果表明:在优化条件下,Ag+的浓度在7.85~157.01μg·L-1范围内和F0/F有良好的线性关系,相关系数r为0.9989,检测限为0.12μg·L-1。由Stern-Volmer方程获得了反应的猝灭常数和双分子猝灭速率常数,由双倒数方程获得了Ag+与ZnSe QDs相互作用的结合常数、结合位点数,并判断出其作用机理为静态猝灭。根据热力学方程计算热力学参数,结果表明Ag+与ZnSe QDs的相互作用为自发过程,主要为静电作用力。  相似文献   

11.
利用abinitio方法,在UHF,UMP2及不同基组3-21G,6-31G^*,6-311+G^*和UMP2(full)/6-311+G^*水平上,研究了O~2/O~2^.^-自交换电子转移反应。优化了电子转移前后反应物和产物的结构,研究了体系能量的变化,计算了自交换电子转移反应的内重组能。对UHF方法和UMP2方法的计算结果进行了比较,并与实验结果进行了对照。结果表明UHF方法由于没有考虑组态相互作用,计算结果存在较大偏差,UMP2(full)/6-311+G^*水平上的计算结果与实验值吻合较好。在UMP2(full)/6-311+G^*水平上计算了气相自交换电子转移反应速率常数。在优化了电子转移复合物结构的基础上考虑了溶剂效应的影响,计算了水溶液中的溶剂重组能。研究结果表明O~2/O~2^.^-体系电子转移反应的活化能主要来源于溶剂重组能的贡献。最后计算了该反应在水溶液中的反应速率常数。理论计算结果与实验值吻合得很好。  相似文献   

12.
利用abinitio方法,在UHF,UMP2及不同基组3-21G,6-31G^*,6-311+G^*和UMP2(full)/6-311+G^*水平上,研究了O~2/O~2^.^-自交换电子转移反应。优化了电子转移前后反应物和产物的结构,研究了体系能量的变化,计算了自交换电子转移反应的内重组能。对UHF方法和UMP2方法的计算结果进行了比较,并与实验结果进行了对照。结果表明UHF方法由于没有考虑组态相互作用,计算结果存在较大偏差,UMP2(full)/6-311+G^*水平上的计算结果与实验值吻合较好。在UMP2(full)/6-311+G^*水平上计算了气相自交换电子转移反应速率常数。在优化了电子转移复合物结构的基础上考虑了溶剂效应的影响,计算了水溶液中的溶剂重组能。研究结果表明O~2/O~2^.^-体系电子转移反应的活化能主要来源于溶剂重组能的贡献。最后计算了该反应在水溶液中的反应速率常数。理论计算结果与实验值吻合得很好。  相似文献   

13.
本文研究了增溶于胶束内部的HA诱导的DPBF光敏氧化动力学。测定了DPBF在不同胶束中光敏氧化总速率常数, 分别为5.12×10^9(SDS), 2.31×10^9(Triton X-100)和6.21×10^9L/mol.s(TDPB)。实验证明胶束可有效猝灭单重态氧却不猝灭HA的激发三重态, 从而导致DPBF光敏氧化双分子反应可按假一级动力学规律处理, 可求出表观速率常数为1.52×10^-^3s^-^1(SDS)或1.54×10^-^3s^-^1(Triton X-100), 相应的半寿命为7.5min, 这些结果为HA在水溶液中的光动态行为的研究提供了依据。  相似文献   

14.
蒋险峰  王夺元 《化学学报》1992,50(4):391-396
本文研究了增溶于胶束内部的HA诱导的DPBF光敏氧化动力学。测定了DPBF在不同胶束中光敏氧化总速率常数, 分别为5.12×10^9(SDS), 2.31×10^9(Triton X-100)和6.21×10^9L/mol.s(TDPB)。实验证明胶束可有效猝灭单重态氧却不猝灭HA的激发三重态, 从而导致DPBF光敏氧化双分子反应可按假一级动力学规律处理, 可求出表观速率常数为1.52×10^-^3s^-^1(SDS)或1.54×10^-^3s^-^1(Triton X-100), 相应的半寿命为7.5min, 这些结果为HA在水溶液中的光动态行为的研究提供了依据。  相似文献   

15.
谢剑炜  许金钩  陈国珍 《化学学报》1995,53(10):972-977
本文首次报道了将敏化和猝灭同时偶合在同一体系中的敏化/猝灭室温磷光新方法。体系中, CTAB胶束一方面增强α-溴代萘的室温磷光发射、α-溴代萘和联乙酰的三重态-三重态能量转移效率, 另一方面起到猝灭α-溴代萘敏化联乙酰发射的室温磷光的作用。CTAB对联乙酰的猝灭反应由三重态-三重态能量转移速率限制,求得α-溴代萘敏化联乙酰的三重态-三重态能量转移速率常数为1.76×10^9(mol.dm^-^3)^-^1s^-^1, CTAB对联乙酰的猝灭常数为7.82×10^7(mol.dm^-^3)^-^1s^-^1。详细研究了实验条件, 实现了猝灭法测定联乙酰,检测限达2.8×10^-^8mol.dm^-^3。  相似文献   

16.
本文首次报道了将敏化和猝灭同时偶合在同一体系中的敏化/猝灭室温磷光新方法。体系中, CTAB胶束一方面增强α-溴代萘的室温磷光发射、α-溴代萘和联乙酰的三重态-三重态能量转移效率, 另一方面起到猝灭α-溴代萘敏化联乙酰发射的室温磷光的作用。CTAB对联乙酰的猝灭反应由三重态-三重态能量转移速率限制,求得α-溴代萘敏化联乙酰的三重态-三重态能量转移速率常数为1.76×10^9(mol.dm^-^3)^-^1s^-^1, CTAB对联乙酰的猝灭常数为7.82×10^7(mol.dm^-^3)^-^1s^-^1。详细研究了实验条件, 实现了猝灭法测定联乙酰,检测限达2.8×10^-^8mol.dm^-^3。  相似文献   

17.
王传义  刘春艳  沈涛 《化学学报》1998,56(5):427-432
通过吸收光谱、荧光猝灭、单光子计数等手段研究了2-(4-乙胺-2-羟基苯基)-4-(4-乙胺-苯基)-方菁染料(SQ)在TiO2超微粒体系中的光化学行为。结果表明, SQ强烈吸附在TiO2胶粒表面, 表观吸附常数为2.275×10^3mol^-^1 . dm^3。SQ的荧光能被TiO2有效地猝灭,猝灭的效率达97%。根据物质的氧化还原电位、光谱特性及荧光寿命的变化提出光诱导电子界面转移的荧光猝灭机理, 电子转移的速率常数为1.97×10^8s^-^1。  相似文献   

18.
在流动余辉装置上,研究了SO(c1Σ-)的猝灭动力学过程.获得了SO2,O2,CO2,N2,He,CS2,CH3OH,C2H5OH,C3H7OH,C4H9OH,CH3COCH3,C6H6,CH2Cl2,CH2Br2,CHCl3,CCl4等16种分子与SO(c1Σ-)发生猝灭反应的速率常数.初步分析表明:醇类分子CnH2n 1OH(n=1,2,3,4)中的C—H键的数目与其对SO(c1Σ-)的猝灭速率成正比;CO2,N2等非极性无机小分子对SO(c1Σ-)的猝灭作用不明显,强极性分子SO2对SO(c1Σ-)的猝灭作用较强.卤代烷烃中的卤素原子的大小对SO(c1Σ-)的猝灭过程发挥着较重要的作用;而氯代烷烃中氯原子的个数与猝灭速率之间的关系不明显.  相似文献   

19.
本文报道室温下用266nm激光光解-荧光猝灭方法测定CH_3COCH_3,CD_3COCD_3,CF_3CO_2H,CF_3CO_2D,CHCl_3和CDCl_3分子猝灭电子激发态CH(A,B)自由基的速率常数,考察了含不同同位素原子的猝灭剂分子对CH(A,B)猝灭的同位素效应.实验发现,含D的分子比相应含H的分子对CH(A,B)的猝灭具有更大的速率常数.  相似文献   

20.
本文报道室温下用266nm激光光解-荧光猝灭方法测定CH~3COCH~3,CD~3COCD~3,CF~3CO~2H,CF~3CO~2D,CHCl~3和CDCl~3分子猝灭电子激发态CH(A,B) 自由基的速率常数,考察了含不同同位素原子的猝灭剂分子对CH(A,B)猝灭的同位素效应. 实验发现,含D的分子比相应含H的分子对CH(A,B)的猝灭具有更大的速率常数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号