首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple glucose biosensor has been developed based on direct electrochemistry of glucose oxidase (GOx) immobilized on the reduced graphene oxide (RGO) and β‐cyclodextrin (CD) composite. A well‐defined redox couple of GOx appears with a formal potential of ~?0.459 V at RGO/CD composite. A heterogeneous electron transfer rate constant (Ks) has been calculated for GOx at RGO/CD as 3.8 s?1. The fabricated biosensor displays a wide response to glucose in the linear concentrations range from 50 µM to 3.0 mM. The sensitivity and limit of detection of the biosensor is estimated as 59.74 µA mM?1 cm?2 and 12 µM, respectively.  相似文献   

2.
《Electroanalysis》2017,29(12):2719-2726
A novel glucose biosensor was constructed through the immobilization of glucose oxidase (GOx) on gold nanoparticles (Au NPs) deposited, and chemically reduced graphene oxide (rGO) nanocomposite. In the synthesis, tannic acid (TA) was used for the reduction of both graphene oxide, and Au3+ to rGO, and Au NPs, respectively. Also, by harnessing the π‐π interaction between graphene oxide and TA, and protein‐TA interaction, a novel nanocomposite for the fabrication of a third generation biosensor was successfully constructed. Upon the oxidation of TA to quinone, which is easily reducible at the negative potential range, enhanced electron transfer was obtained. The cyclic voltammetry (CV) results demonstrated a pair of well‐defined and quasi‐reversible redox peaks of active site molecule of GOx. The biosensor exhibited a linear response to glucose concentrations varying from 2 to 10 mM with a sensitivity of 18.73 mA mM−1 cm−2. The fabricated biosensor was used for the determination of glucose in beverages.  相似文献   

3.
A novel electrochemical platform based on nickel oxide (NiO) nanoparticles and TiO2–graphene (TiO2–Gr) was developed for the direct electrochemistry of glucose oxidase (GOD). The electrochemical behavior of the sensor was studied using cyclic voltammetry and chronoamperometry. The experimental results demonstrated that the nanocomposite well retained the activity of GOD and the modified electrode GOD/NiO/TiO2–Gr/GCE exhibited excellent electrocatalytic activity toward the redox of GOD as evidenced by the significant enhancement of redox peak currents in comparison with bare GCE. The biosensor responded linearly to glucose in the range of 1.0–12.0?mM, with a sensitivity of 4.129?μA?mM?1 and a detection limit of 1.2?×?10?6?M under optimized conditions. The response time of the biosensor was 3?s. In addition, the developed biosensor possessed good reproducibility and stability, and there was negligible interference from other electroactive components.  相似文献   

4.
In this study, a new glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on platinum nanoparticles (Pt NPs) decorated reduced graphene oxide (rGO)/Zn‐MOF‐74 hybrid nanomaterial. Herein, the biosensor fused the advantages of rGO with those of porous Zn‐MOF and conductive Pt NPs. This has not only enlarged the surface area and porosity for the efficient GOx immobilization and faster mass transport, but also provided favorable electrochemical features such as high current density, remarkable electron mobility through metal nanoparticles, and improved electron transfer between the components. The GOx‐rGO/Pt NPs@Zn‐MOF‐74 coated electrode displayed a linear measurement range for glucose from 0.006 to 6 mM, with a detection limit of 1.8 μM (S/N: 3) and sensitivity of 64.51 μA mM?1 cm?2. The amperometric response of the enzyme biosensor demonstrated the typical behavior of Michaelis‐Menten kinetics. The obtained satisfying sensitivity and measurement range enabled fast and accurate glucose measurement in cherry juice using the fabricated biosensor. The water‐stable Zn‐MOF‐74 demonstrated higher enzyme loading capacity and can be potent supporting material for biosensor construction.  相似文献   

5.
《Analytical letters》2012,45(7):1158-1172
Abstract

A disposable glucose biosensor is developed by immobilizing glucose oxidase into silver nanoparticles-doped silica sol-gel and polyvinyl alcohol hybrid film on a Prussian blue-modified screen-printed electrode. The silver nanoparticles-enhanced biosensor shows a linear amperometric response to glucose from 1.25 × 10?5 to 2.56 × 10?3 with a sensitivity of 20.09 mA M?1 cm?2, which is almost double that of the biosensors without silver nanoparticles. The immobilized glucose oxidase retained 91% of its original activity after 30 days of storage in phosphate buffer (pH 6.9; 0.1 M) at 4°C. Blood glucose in a rabbit serum sample was successfully measured with the biosensor.  相似文献   

6.
A sensitive hydrogen peroxide (H2O2) biosensor was developed based on a reduced graphene oxide|carbon ceramic electrode (RGO|CCE) modified with cadmium sulfide‐hemoglobin (CdS‐Hb). The electron transfer kinetics of Hb were promoted due to the synergetic function of RGO and CdS nanoparticles. The transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) were calculated to be 0.54 and 2.6 s?1, respectively, indicating a great facilitation achieved in the electron transfer between Hb and the electrode surface. The biosensor showed a good linear response to the reduction of H2O2 over the concentration range of 2–240 µM with a detection limit of 0.24 µM (S/N=3) and a sensitivity of 1.056 µA µM?1 cm?2. The high surface coverage of the CdS‐Hb modified RGO|CCE (1.04×10?8 mol cm?2) and a smaller value of the apparent Michaelis? Menten constant (0.24 mM) confirmed excellent loading of Hb and high affinity of the biosensor for hydrogen peroxide.  相似文献   

7.
For the first time silicon nitride (Si3N4) nanoparticles was used for preparation electrochemical biosensor. GOx immobilized on the Si3N4 nanoparticles exhibits facile and direct electrochemistry. The surface coverage and heterogeneous electron transfer rate constant (ks) of immobilized GOx were 6.3×10?13 mol cm?2 and 47.4±0.3 s?1. The sensitivity, linear concentration range and detection limit of the biosensor for glucose detection were 38.57 µA mM?1 cm?2, 25 µM to 8 mM and 6.5 µM, respectively. This biosensor also exhibits good stability, reproducibility and long life time. These indicate Si3N4 nanoparticles is good candidate material for construction of third generation biosensor and bioelectronics devices.  相似文献   

8.
A glucose amperometric biosensor was developed. Glucose oxidase enzyme was immobilized by means of a Nafion membrane on glassy carbon modified with an electrochemically deposited mixed Cu and Pd hexacyanoferrate (CuPdHCF). According to the data provided by X-ray atomic spectroscopy measurements, this Cu- and Pd-based hexacyanoferrate is likely to be a mixture of single CuHCF and PdHCF pure phases. The biosensor performances were evaluated by recording the steady-state currents due to submillimolar additions of glucose to a potassium buffer solution (pH 5.5) and exploiting the electrocatalytic reduction of the enzymatically produced hydrogen peroxide. The CuPdHCF-based biosensor exhibited a sensitivity of 8.1?±?0.6 A M?1 m?2, a limit of detection of 1.4?×?10?5 M, and a linear response range extending between 5?×?10?5 and 4?×?10?4 M, with a dynamic response range up to 4?×?10?3 M glucose. Electrode sensitivity and signal stability resulted more satisfactory as compared to those of a CuHCF-based biosensor fabricated according to the same procedure. The selectivity was investigated through an interference study. The response to easily oxidizable species was found to be low enough to allow glucose determination in biological samples.  相似文献   

9.
A highly sensitive and selective glucose biosensor has been developed based on immobilization of glucose oxidase within mesoporous carbon nanotube–titania–Nafion composite film coated on a platinized glassy carbon electrode. Synergistic electrocatalytic activity of carbon nanotubes and electrodeposited platinum nanoparticles on electrode surface resulted in an efficient reduction of hydrogen peroxide, allowing the sensitive and selective quantitation of glucose by the direct reduction of enzymatically‐liberated hydrogen peroxide at ?0.1 V versus Ag/AgCl (3 M NaCl) without a mediator. The present biosensor responded linearly to glucose in the wide concentration range from 5.0×10?5 to 5.0×10?3 M with a good sensitivity of 154 mA M?1cm?2. Due to the mesoporous nature of CNT–titania–Nafion composite film, the present biosensor exhibited very fast response time within 2 s. In addition, the present biosensor did not show any interference from large excess of ascorbic acid and uric acid.  相似文献   

10.
Sulfonated graphene nanosheet/gold nanoparticle (SGN/Au) hybrid was synthesized by electrostatic self-assembly of anionic SGN and positively charged gold nanoparticles. Due to the well-dispersivity of SGN in aqueous solution and its adequate negative charge, Au nanoparticles were assembled uniformly on graphene surface with high distribution. With the advantages of both graphene and Au nanoparticles, SGN/Au hybrid showed enhanced electrocatalytic activity towards O2 reduction. Furthermore, it provided a conductive and favorable microenvironment for the glucose oxidase (GOD) immobilization and thus promoted its direct electron transfer at the glassy carbon electrode. Based on the consumption of O2 caused by glucose at the interface of GOD electrode modified with SGN/Au hybrid, the modified electrode displayed satisfactory analytical performance, including high sensitivity (14.55 μA mM?1 cm?2), low detection limit (0.2 mM), an acceptable linear range from 2 to 16 mM, and also the prevention from the interference of some species. These results indicated that the prepared SGN/Au hybrid is a promising candidate material for high-performance glucose biosensor.  相似文献   

11.
We have developed an enzymatic glucose biosensor that is based on a flat platinum electrode which was covered with electrophoretically deposited rhodium (Rh) nanoparticles and then sintered to form a large surface area. The biosensor was obtained by depositing glucose oxidase (GOx), Nafion, and gold nanoparticles (AuNPs) on the Rh electrode. The electrical potential and the fractions of Nafion and GOx were optimized. The resulting biosensor has a very high sensitivity (68.1 μA mM?1 cm?2) and good linearity in the range from 0.05 to 15 mM (r?=?0.989). The limit of detection is as low as 0.03 mM (at an SNR of 3). The glucose biosensor also is quite selective and is not interfered by electroactive substances including ascorbic acid, uric acid and acetaminophen. The lifespan is up to 90 days. It was applied to the determination of glucose in blood serum, and the results compare very well with those obtained with a clinical analyzer.
Figure
An enzymatic glucose biosensor was prepared based on rhodium nanoparticle modified Pt electrode and glucose oxidase immobilized in gold nanoparticles and Nafion composite film. The electrode showed a good response to glucose. The sensor was applied to the determination of glucose in blood serum.  相似文献   

12.
A novel amperometric glucose biosensor is presented in this article, which is based on the adsorption of glucose oxidase on gold‐platinum nanoparticle (AuPt NP)‐multiwalled carbon nanotube (MWNT) – ionic liquid (i.e., 1‐octyl‐3‐methylimidazolium hexafluorophosphate, [OMIM]PF6) composite. The gold‐platinum nanoparticles is prepared through direct electrodeposition. Owing to the synergistic action of AuPt nanoparticle, MWNT and [OMIM]PF6, the biosensor shows good response to glucose, with wide linear range (0.01 to 9.49 mM), short response time (3 s), and high sensitivity (3.47 μA mM−1). With the biosensor the determination of glucose in human serum is performed.  相似文献   

13.
In this research a novel osmium complex was used as electrocatalyst for electroreduction of oxygen and H2O2 in physiological pH solutions. Electroless deposition at a short period of time (60 s), was used for strong and irreversible adsorption of 1,4,8,12‐tetraazacyclotetradecane osmium(III) chloride (Os(III)LCl2) ClO4 onto single‐walled carbon nanotubes (SWCNTs) modified GC electrode. The modified electrode shows a pair of well defined and reversible redox couple, Os(IV)/Os(III) at wide pH range (1–8). The glucose biosensor was fabricated by covering a thin film of glucose oxidase onto CNTs/Os‐complex modified electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The fabricated biosensor shows high sensitivity, 826.3 nA μM?1cm?2, low detection limit, 56 nM, fast response time <3 s and wide calibration range 1.0 μM–1.0 mM. The biosensor has been successfully applied to determination of glucose in human plasma. Because of relative low applied potential, the interference from electroactive existing species was minimized, which improved the selectivity of the biosensor. The apparent Michaelis‐Menten constant of GOx on the nanocomposite, 0.91 mM, exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this glucose biosensor.  相似文献   

14.
In this work, graphene oxide (GO) was directly reduced by copper to reduced graphene oxide (RGO) and formed a highly uniform RGO film on copper foil or copper-modified titanium (Ti) substrate. The characterization of as-prepared RGO film by FTIR and XRD indicated that GO was partially reduced by copper while some oxygen-containing groups still remained. The conductivity of the RGO film was improved from 3.76?×?103 to 2.98?×?104 S/m after it was further electrochemically reduced due to the removal of additional oxygen groups. The graphene supercapacitor prepared with this method exhibited better performances in a neutral aqueous electrolyte compared with that reported for graphene electrodes prepared by other fabrication methods.  相似文献   

15.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

16.
Graphene was successfully prepared and well separated to individual sheets by introducing  SO3. XRD and TEM were employed to characterize the graphene. UV‐visible absorption spectra indicated that glucose oxidase (GOx) could keep bioactivity well in the graphene‐Au biocomposite. To construct a novel glucose biosensor, graphene, Au and GOx were co‐immobilized in Nafion to further modify a glassy carbon electrode (GCE). Electrochemical measurements were carried out to investigate the catalytic performance of the proposed biosensor. Cyclic voltammograms (CV) showed the biosensor had a typical catalytic oxidation response to glucose. At the applied potential +0.4 V, the biosensor responded rapidly upon the addition of glucose and reached the steady state current in 5 s, with the present of hydroquinone. The linear range is from 15 μM to 5.8 mM, with a detection limit 5 μM (based on the S/N=3). The Michaelis‐Menten constant was calculated to be 4.4 mM according to Lineweaver–Burk equation. In addition, the biosensor exhibits good reproducibility and long‐term stability. Such impressive properties could be ascribed to the synergistic effect of graphene‐Au integration and good biocompatibility of the hybrid material.  相似文献   

17.
《Electroanalysis》2006,18(18):1842-1846
Nanosized Prussian blue (PB) particles were synthesized with a chemical reduction method and then the PB nanoparticles were assembled on the surface of multiwall carbon nanotubes modified glassy carbon electrode (PB/MWNTs/GCE). The results showed that the PB/MWNTs nanocomposite exhibits a remarkably improved catalytic activity towards the reduction of hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the PB/MWNTs platform by an electrochemically polymerized o‐phenylenediamine (OPD) film to construct an amperometric glucose biosensor. The biosensor exhibited a wide linear response up to 8 mM with a low detection limit of 12.7 μM (S/N=3). The Michaelis–Menten constant Km and the maximum current imax of the biosensor were 18.0 mM and 4.68 μA, respectively. The selectivity and stability of the biosensor were also investigated.  相似文献   

18.
A new glucose biosensor, based on the modification of highly ordered Au nanowire arrays (ANs) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. Morphologies of ANs and ANs/PtNPs were observed by scanning electron microscope. The electrochemical properties of ANs, ANs/GOx, ANs/PtNPs, and ANs/PtNPs/GOx electrodes were compared by cyclic voltammetry. Results obtained from comparison of the cyclic voltammograms show that PtNPs modification enhances electrochemical catalytic activity of ANs to H2O2. Hence, ANs/PtNPs/GOx biosensor exhibits much better sensing to glucose than ANs/GOx. Optimum deposition time of ANs/PtNPs/GOx biosensor for both amperometric and potentiometric detection of glucose was achieved to be 150 s at deposition current of 1?×?10?6 A. A sensitivity of 0.365 μA/mM with a linear range from 0.1 to 7 mM was achieved for amperometric detection; while for potentiometric detection the sensitivity is 33.4 mV/decade with a linear range from 0.1 to 7 mM.  相似文献   

19.
Nanofibrous membranes have been produced by electrospinning to develop first generation glucose biosensors. The direct immobilization of glucose oxidase onto the polyamide nanofibrous surfaces by drop coating revealed a simple and efficient method for the development of sensitive, stable, and reproducible electrochemical biosensors. The biosensor showed a linear response over the range 1–9×10?3 glucose (R2=0.9997) with a sensitivity of 1.11 μA/mM and a limit of detection of 2.5×10?6 M (S/N=3). The uncertainty of repeatability was 2% (RSD%, n=30). After one month of storage, the signal decreased of 35%. The recovery of glucose, evaluated in real samples of honey, was 98% (RSD%=1%, n=3).  相似文献   

20.
《Analytical letters》2012,45(11):2116-2127
Abstract

In the present paper the ultrafine and highly dispersed platinum nanoparticles (average size 3 nm) were used for the construction of a glucose biosensor in a simple method. An excellent response to glucose has been obtained with a high sensitivity (137.7 µA mM?1 cm?2) and fast response time (5 s). The biosensor showed a detection limit of 5 µM (at the ratio of signal to noise, S/N=3) and a linear range form 0.2 to 3.2 mM with a correlation coefficient r=0.999. The apparent Michaelis–Menten constant (k m) and the maximum current were estimated to be 9.36 and 1.507 mA mM?1 cm?2, respectively. In addition, effects of pH value, applied potential and the interferents on the amperometric response of the sensor were investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号