首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple procedure was developed to prepare a glassy carbon electrode modified with multi walled carbon nanotubes (MWCNTs) and Celestin blue. Cyclic voltammograms of the modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range (2–12). The formal potential of redox couple (E′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of Celestine blue immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2. The charge transfer coefficient (α) and heterogeneous electron transfer rate constants (ks) for GC/MWCNTs/Celestine blue were 0.43 and 1.26 s?1, respectively. The modified electrode show strong catalytic effect for reduction of hydrogen peroxide and oxygen at reduced overpotential. The glucose biosensor was fabricated by covering a thin film of sol‐gel composite containing glucose oxides (GOx) on the surface of Celestine blue /MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 0.3 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. The accuracy of the biosensor for glucose detection was evaluated by detection of glucose in a serum sample, using standard addition protocol. In addition biosensor can reach 90% of steady currents in about 3.0 sec and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) was eliminated. Furthermore, the apparent Michaelis–Menten constant 2.4 mM, of GOx on the nano composite exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of glucose biosensor.  相似文献   

2.
An osmium redox hydrogel mediated biosensor for continuous monitoring of glucose extracted from subcutaneous solution by reverse iontophoresis has been developed. For the measurement of low concentration glucose, osmium‐poly(vinylpyridine) wiring horseradish peroxidase was introduced to modify the smooth Au electrodes, and the developed glucose biosensor exhibited a high sensitivity of 11.45 nA μM?1 cm?2 and a low detection limit of 2 μM, as well as a high operational stability of more than 97% of its initial activity over a test period of 13.5 h in stirred glucose solution at low applied potential (?0.1 V vs. Ag|AgCl), efficiently inhibiting the electroactive interferences. Permeability of the hydrogels was studied and a diffusion coefficient of 2.4×10?5 cm2/s for H2O2 was obtained. In addition, the effects, such as temperature and the variation happening on Ag|AgCl counter electrode, on determination of glucose were also considered. The proof‐of‐feasibility of the biosensors for the monitoring of the glucose extracted from the subcutaneous solution was tested in vitro, and the responses of the sensors were analyzed. A linear response to current produced by extracted glucose in the concentration range of subcutaneous glucose from 1.0 to 12 mM was obtained with a correlation coefficient up to 0.989. These results testify the feasibility of the developed sensors for measuring the low concentration glucose and have significance for the development of noninvasive glucose monitoring system for the control of diabetes.  相似文献   

3.
The fabrication of a highly sensitive amperometric glucose biosensor based on silver nanowires (AgNWs) is presented. The electrochemical behavior of glassy carbon electrode modified by Ag NWs exhibits remarkable catalytic performance towards hydrogen peroxide (H2O2) and glucose detection. The biosensor could detect glucose in the linear range from 0.005 mM to 10 mM, with a detection limit of 50 µM (S/N=3). The glucose biosensor shows high and reproducible sensitivity of 175.49 µA cm?2 mM and good stability. In addition, the biosensor exhibits a good anti‐interference ability and favorable stability over relatively long‐term storage (more than 21 days).  相似文献   

4.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

5.
A novel amperometric glucose biosensor was fabricated by in situ incorporating glucose oxidase (GOD) within the sol‐gel silica film on a Prussian blue (PB) modified electrode. The method is simple and controllable, which combined the merits of in situ immobilizing biomolecules in sol‐gel silica film by electrochemical method and the synergic catalysis effects of PB and GOD molecules. Scanning electron microscopy (SEM) showed that the GOD/sol‐gel silica film was homogeneous with a large number of three‐dimensional nanopores, which not only enhanced mass transport, but also maintained the active configuration of the enzyme molecule and prevented the leakage of enzyme, therefore improved the stability and sensitivity of the biosensor. The fabricated biosensor showed fast response time (10 s), high sensitivity (26.6 mA cm?2 M?1), long‐term stability, good suppression of interference, and linear range of 0.01 mM–5.8 mM with a low detection limit of 0.94 μM for the detection of glucose. In addition, the biosensor was successfully applied to determine glucose in human serum samples.  相似文献   

6.
One of the major problems in amperometric biosensors based on detection of H2O2 produced by enzymatic reaction between oxidase enzymes and substrate is the interference of redox active compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA). To minimize these interferences, sodium bismuthate was used for the first time as an insoluble pre‐oxidant in the flow injection (FI) amperometric glucose biosensor at a Glucose oxidase (GOx) immobilized Pt/Pd bimetallic modified pre‐anodized pencil graphite electrode (p.PGE). In this context, these interfering compounds were injected into a flow injection analysis (FIA) system using an injector which was filled with NaBiO3. Thus, these interferents were converted into their redox inactive oxidized forms before reaching the electrode in the flow cell. While glucose was not influenced by the pre‐oxidant in the injector, the huge oxidation peak currents of the interferents decreased significantly in the biosensor. FI amperometric current time curves showed that the AA, DA and UA were minimized by 96 %, 86 %, and 98 % respectively, in the presence of an equivalent concentration of interferences in a 1.0 mM glucose solution. The proposed FI amperometric glucose biosensor exhibits a wide linear range (0.01–10 mM, R2=0.9994) with a detection limit of 2.4×10?3 mM. Glucose levels in the artificial serum and two real samples were successfully determined using the fabricated FI amperometric biosensor.  相似文献   

7.
Here we report the first mediated pain free microneedle‐based biosensor array for the continuous and simultaneous monitoring of lactate and glucose in artificial interstitial fluid (ISF). The gold surface of the microneedles has been modified by electrodeposition of Au‐multiwalled carbon nanotubes (MWCNTs) and successively by electropolymerization of the redox mediator, methylene blue (MB). Functionalization of the Au‐MWCNTs/polyMB platform with the lactate oxidase (LOX) enzyme (working electrode 1) and with the FAD‐Glucose dehydrogenase (FADGDH) enzyme (working electrode 2) enabled the continuous monitoring of lactate and glucose in the artificial ISF. The lactate biosensor exhibited a high sensitivity (797.4±38.1 μA cm?2 mM?1), a good linear range (10–100 μM) with a detection limit of 3 μM. The performance of the glucose biosensor were also good with a sensitivity of 405.2±24.1 μA cm?2 mM?1, a linear range between 0.05 and 5 mM and a detection limit of 7 μM. The biosensor array was tested to detect the amount of lactate generated after 100 minutes of cycling exercise (12 mM) and of glucose after a normal meal for a healthy patient (10 mM). The results reveal that the new microneedles‐based biosensor array seems to be a promising tool for the development of real‐time wearable devices with a variety of sport medicine and clinical care applications.  相似文献   

8.
Nanohybrids of chemically modified graphene (CMG) and ionic liquid (IL) were prepared by sonication to modify the electrode. The modified CMG‐IL electrodes showed a higher current and smaller peak‐to‐peak potential separation than a bare electrode due to the promoted electron transfer rate. Furthermore, the glucose oxidase (GOx) immobilized on the modified electrode displayed direct electron transfer rate and symmetrical redox potentials with a linear relationship at different scan rates. The fabricated GOx/CMG‐IL electrodes were developed selective glucose biosensor with respect to a sensitivity of 0.64 μA mM?1, detection limit of 0.376 mM, and response time of <5 s.  相似文献   

9.
Glucose oxidase (GOD) was encapsulated in chitosan matrix and immobilized on a glassy carbon electrode, achieving direct electron transfer (DET) reaction between GOD and electrode without any nano‐material. On basis of such DET, a novel glucose biosensor was fabricated for direct bioelectrochemical sensing without any electron‐mediator. GOD incorporated in chitosan films gave a pair of stable, well‐defined, and quasireversible cyclic voltammetric peaks at about ?0.284 (Epa) and ?0.338 V (Epc) vs. Ag/AgCl electrode in phosphate buffers. And the peak is located at the potentials characteristic of FAD redox couples of the proteins. The electrochemical parameters, such as midpoint potential (E1/2) and apparent heterogeneous electron‐transfer rate constants (ks) were estimated to ?0.311 V and 1.79 s?1 by voltammetry, respectively. Experimental results indicate that the encapsulated GOD retains its catalytic activity for the oxidation of glucose. Such a GOD encapsulated chitosan based biosensor revealed a relatively rapid response time of less than 2 min, and a sufficient linear detection range for glucose concentration, from 0.60 to 2.80 mmol L?1 with a detection limit of 0.10 mmol L?1 and electrode sensitivity of 0.233 μA mmol?1. The relative standard deviation (RSD) is under 3.2% (n=7) for the determination of practical serum samples. The biologic compounds probably existed in the sample, such as ascorbic acid, uric acid, dopamine, and epinephrine, do not affect the determination of glucose. The proposed method is satisfactory to the determination of human serum samples compared with the routine hexokinase method. Both the unique electrical property and biocompatibility of chitosan enable the construction of a good bio‐sensing platform for achieved DET of GOD and developed the third‐generation glucose biosensors.  相似文献   

10.
A new H2O2 enzymeless sensor has been fabricated by incorporation of thionin onto multiwall carbon nanotubes (MWCNTs) modified glassy carbon electrode. First 50 μL of acetone solution containing dispersed MWCNTs was pipetted onto the surface of GC electrode, then, after solvent evaporations, the MWCNTs modified GC electrode was immersed into an aqueous solution of thionin (electroless deposition) for a short period of time <5–50 s. The adsorbed thin film of thionin was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase enzyme. Also the modified electrode shows excellent catalytic activity for oxygen reduction at reduced overpotential. The rotating modified electrode shows excellent analytical performance for amperometric determination of hydrogen peroxide, at reduced overpotentials. Typical calibration at ?0.3 V vs. reference electrode, Ag/AgCl/3 M KCl, shows a detection limit of 0.38 μM, a sensitivity of 11.5 nA/μM and a liner range from 20 μM to 3.0 mM of hydrogen peroxide. The glucose biosensor was fabricated by covering a thin film of sol–gel composite containing glucose oxides on the surface of thionin/MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 1 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. In addition biosensor can reach 90% of steady currents in about 3.0 s and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) is eliminated. The usefulness of biosensor for direct glucose quantification in human blood serum matrix is also discussed. This sensor can be used as an amperometric detector for monitoring oxidase based biosensors.  相似文献   

11.
In this study, a new glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on platinum nanoparticles (Pt NPs) decorated reduced graphene oxide (rGO)/Zn‐MOF‐74 hybrid nanomaterial. Herein, the biosensor fused the advantages of rGO with those of porous Zn‐MOF and conductive Pt NPs. This has not only enlarged the surface area and porosity for the efficient GOx immobilization and faster mass transport, but also provided favorable electrochemical features such as high current density, remarkable electron mobility through metal nanoparticles, and improved electron transfer between the components. The GOx‐rGO/Pt NPs@Zn‐MOF‐74 coated electrode displayed a linear measurement range for glucose from 0.006 to 6 mM, with a detection limit of 1.8 μM (S/N: 3) and sensitivity of 64.51 μA mM?1 cm?2. The amperometric response of the enzyme biosensor demonstrated the typical behavior of Michaelis‐Menten kinetics. The obtained satisfying sensitivity and measurement range enabled fast and accurate glucose measurement in cherry juice using the fabricated biosensor. The water‐stable Zn‐MOF‐74 demonstrated higher enzyme loading capacity and can be potent supporting material for biosensor construction.  相似文献   

12.
Nail‐like carbon (NLC) was synthesized by a simple hydrothermal method. It was the first time that a novel electrochemical biosensing of glucose was explored based on the glucose oxidase (GOx)‐NLC‐chitosan (CHIT) glassy carbon electrode. Morphology and structure of NLC were characterized by scanning electron microscope; meanwhile the chemical composition was determined by X‐ray diffraction and energy dispersive X‐ray spectroscopy. The cyclic voltammetry of immobilized GOx showed a pair of quasireversible redox peaks with the formal potential (E°′) of ?0.458 V and the peak‐to‐peak potential separation was 47 mV at a scan rate of 100 mV s?1. The present biosensor has a linear range of glucose from 0.02 to 1.84 mM (correlation coefficient of 0.9991) and detection limit of 0.01 mM (S/N=3). Compared with the previous reports based on the carbon material biosensor, it has a high sensitivity of 165.5 μA mM?1 cm?2 and low apparent Michaelis–Menten constant of 0.506 mM. Thus, the NLC may have potential applications in the field of bioelectrochemistry, bioelectronics and biofuels.  相似文献   

13.
《Electroanalysis》2017,29(5):1368-1376
In this work, a photoamperometric glucose biosensor based on glucose oxidase (GODx) was developed in flow injection analysis (FIA) system using ZnS‐CdS quantum dot (QD) modified multiwalled carbon nanotube/glassy carbon electrode (ZnS‐CdS/MWCNT/GCE). Cyclic voltammograms of the proposed electrode (GODx/ZnS‐CdS/MWCNT/GCE) showed a pair of well‐defined reversible redox peak attributing that direct electron transfer between the protein and electrode. The current of the reduction peak became more cathodic in the presence of O2 due to the electrocatalytic activity of the electrode towards the reduction of dissolved O2, but reduction current shifted to a less negative value upon addition of glucose in the solution. The obtained CV currents were affected by the irradiation of the electrode surface. Thus, the photoelectrochemical biosensing of glucose in the FIA system was studied by monitoring of the changes in the electrocatalyzed reduction peak current of dissolved O2 at the proposed electrode dependent on glucose concentration. The proposed photoelectrochemical FIA method has a linear response to glucose ranging from of 0.01 to 1.0 mM with detection limit of 3.0 μM under optimized conditions. Photoelectrochemical biosensor was successfully fabricated in FIA system for selective, sensitive and repeatable detection of glucose and has been satisfactorily applied to determination of glucose in real sample.  相似文献   

14.
PtRu nanoparticles were supported on multiwall carbon nanotubes (MWNTs), which were further fabricated as an electrode for nonenzymatic glucose sensing. Transmission electron microscope and X‐ray diffraction patterns were used for characterization of the PtRu nanoparticles on MWNTs. Cyclic voltammetry and chronopotentiometry were applied to investigate the performance of the PtRu/MWNTs nanocomposite electrode for nonenzymatic oxidation of glucose. The PtRu/MWNTs electrode shows high electrocatalytic activity towards the oxidation of glucose in 0.1 M NaOH solution and thus can be used to selectively detect glucose. Under the optimal potential (+0.55 V vs. Ag/AgCl), the biosensor effectively performs a selective electrochemical analysis of glucose in the presence of common interferents, such as ascorbic acid (AA), dopamine (DP) and uric acid (UA). Wide linear calibration ranging from 1 mM to 15 mM, high sensitivity of 28.26 μA cm?2 mM?1, low detection limit of 2.5×10?5 M, and fast response time of 10 s were achieved for the detection of glucose at the PtRu/MWNTs electrode.  相似文献   

15.
For point‐of‐care examination, total CK (creatine kinase: adenosine‐5‐triphosphate‐creatine phosphotransferase, EC 2.7.3.2) biosensors were developed and optimized. The biosensors were fabricated with three‐Au‐electrode system modified with polyvinylpyridine‐osmium‐wired horseradish peroxidase (PVP‐Os‐HRP) redox polymer film. The reagents were separately immobilized on the single layer biosensor and double layer biosensor which contained lens paper layer and the surface layer of the working electrode. The mediator, the working potential, the structure of working electrode and the stabilizer agent were studied. The biosensor with double reagent layer showed good stability at room temperature (≥2 months) and the biosensor with single reagent layer had excellent response signal (a sensitivity of 11 nA L U?1 cm?2).  相似文献   

16.
In this study, a new method for modification of vertically aligned carbon nanotube arrays (VACNTs) for selective detection of glucose was developed. VACNTs were grown by chemical vapor deposition method on a silicon substrate deposited with alumina as a buffer layer and iron as a catalyst using radio frequency (RF) sputtering and electron beam evaporation, respectively. The surface of the electrode was modified with electrodeposition of polyaniline (PANI) followed by covalent attachment of glucose oxidase (GOx). The electrode was characterized using field emission scanning electron microscopy (FESEM), micro‐Raman spectroscopy, and attenuated total reflectance Fourier transform infrared spectrometer (ATR‐FTIR) techniques. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of the electrode. The fabricated electrode was successfully employed as a point‐of‐care (POC) biosensor for the detection of glucose in human blood plasma. The detection limit was 1.1 μM, and the sensitivity was 620 μA mM?1 cm?2 at the linear range of 2–426 μM.  相似文献   

17.
Prussian blue modified carbon ionic liquid electrodes (PB‐CILEs) were fabricated using chemical and electrochemical procedures. Chemically fabricated PB‐CILE exhibited an excellent sensitivity (0.0866 μA μM?1), low detection limit (0.01 μM) and two linear ranges (0.01–1 and 1–600 μM) toward hydrogen peroxide. Then, glucose oxidase (GOx) was immobilized on the surface of PB‐CILE to fabricate glucose biosensor using three different procedures involving cross linking with glutaraldehyde (GLU) and bovine serum albumin (BSA), entrapment into the Nafion matrix and covering with a sol‐gel layer. Glucose biosensor fabricated using cross linking procedure showed the best sensitivity (0.0019 μA μM?1) and operational stability for glucose.  相似文献   

18.
A simple glucose biosensor has been developed based on direct electrochemistry of glucose oxidase (GOx) immobilized on the reduced graphene oxide (RGO) and β‐cyclodextrin (CD) composite. A well‐defined redox couple of GOx appears with a formal potential of ~?0.459 V at RGO/CD composite. A heterogeneous electron transfer rate constant (Ks) has been calculated for GOx at RGO/CD as 3.8 s?1. The fabricated biosensor displays a wide response to glucose in the linear concentrations range from 50 µM to 3.0 mM. The sensitivity and limit of detection of the biosensor is estimated as 59.74 µA mM?1 cm?2 and 12 µM, respectively.  相似文献   

19.
A novel glucose biosensor was developed based on the immobilization of glucose oxidase (GOx) on reduced graphene oxide incorporated with electrochemically deposited platinum and palladium nanoparticles (PtPdNPs). Reduced graphene oxide (RGO) was more hybridized by chemical and heat treatment. Bimetallic nanoparticles were deposited electrochemically on the RGO surface for potential application of the Pd? Pt alloy in biosensor preparation. The as‐prepared hybrid electrode exhibited high electrocatalytic activities toward H2O2, with a wide linear response range from 0.5 to 8 mM (R2=0.997) and high sensitivity of 814×10?6 A/mMcm2. Furthermore, glucose oxidase with active material was integrated by a simple casting method on the RGO/PdPtNPs surface. The as‐prepared biosensor showed good amperometric response to glucose in the linear range from 2 mM to 12 mM, with a sensitivity of 24×10?6 A/mMcm2, a low detection limit of 0.001 mM, and a short response time (5 s). Moreover, the effect of interference materials, reproducibility and the stability of the sensor were also investigated.  相似文献   

20.
A novel amperometric glucose biosensor based on layer‐by‐layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. Transmission electron microscopy images and ζ‐potentials proved the formation of layer‐by‐layer nanostructures on carboxyl‐functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt‐DENs toward H2O2 and special three‐dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5 μM, a wide linear range of 5 μM–0.65 mM, a short response time (within 5 s), and high sensitivity (30.64 μA mM?1 cm?2) and stability (80% remains after 30 days).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号