首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
乙炔基自由基C2H与氧气反应的密度泛函理论研究   总被引:7,自引:3,他引:4  
应用量子化学从头算和密度泛函理论(DFT)对C2H自由基和O2的反应进行了研究.在B3LYP/6-311G**水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型,并计算出它们的振动频率和零点振动能(ZPVE).各物种的总能量由CCSD(T)/6-311G**//B3LYP/6-311G**给出,并对能量进行了零点能校正.计算结果表明,反应物中自由基C2H中的边端C进攻O2形成了中间体1 (HCCOO),中间体1是一个加合产物.由中间体1经过不同的反应通道可以生成不同的产物P1 (HCO+CO), P2 (HCCO+O), P3(CO2+CH), P4 (C2O+OH)和P5 (2CO+H).反应通道之间存在着竞争机制.其中P1, P2是主要产物,其次还有一定比例的P5生成,而产物P3, P4的生成几率较低.各条反应通道化学反应热的计算与实验吻合较好.  相似文献   

2.
Mo-Zn/HZSM-5催化剂上甲烷与丙烷混合物的无氧芳构化   总被引:8,自引:0,他引:8  
研究了甲烷和丙烷的混合气体在x%Mo+6%Zn/HZSM-5催化剂上(x=0.3,0.5,0.7,0.9)的无氧芳构化反应性能.结果表明,在873K,GHSV=3L/(g·h)和n(C1)/n(C3)=1.0条件下,甲烷的转化率在29%~35%之间,芳烃选择性大于80%.其中0.7%Mo+6%Zn/HZSM-5对甲烷表现出最优的活性,甲烷转化率达到34.8%,丙烷转化率为69.6%.探讨了反应时间和n(C1)/n(C3)比对甲烷和丙烷转化率及其产物分布的影响.结果显示,丙烷的存在促使甲烷活化并参与芳构化反应.同位素13CH4示踪实验发现,13C进入了C6H6+,C7H8+和C8H10+碎片中,进一步证实了甲烷进入芳烃形成过程.此种用丙烷活化甲烷的过程可能为天然气和炼厂气的直接利用提供了一个新的反应途径.  相似文献   

3.
电催化CO2减排技术利用电能将过量的CO2转化为有附加值的化学品,是解决能源危机、实现碳中和的有效途径之一.电催化CO2还原反应(CO2RR)中的多碳产物(C2),如乙烯和乙醇,因其比C1产物具有更高的能量密度和更广泛的应用而受到较大关注.目前为止,Cu基催化剂被认为是获得C2产物的独特材料.研究者在提高Cu基催化剂C2产物的活性和选择性方面做了大量的工作,如催化剂形貌工程、活性位点设计和中间吸附性能调控等.许多理论和实验研究已经证明,Cu基催化剂上的C-C偶联过程是C2产物生成的速率决定步骤.优化C-C偶联过程的能垒是提高C2产物活性和选择性的重要而直接的策略.CO2RR在Cu上是由CO2还原吸附CO(*CO)并二聚生成C2产物引起的.C-C偶联过程与*CO的吸附性能密切相关.众所周知,CO是一种典型的极性分子,因此其在催化剂表面的吸附性能可能会受到活性位点周围的局部电场的影响.构建合适的局部电场是调节CO吸附性能和C-C偶联过程的潜在手段之一.前期工作(Nature,2016,537,382-386)证明了高曲率金纳米针可以在尖端产生高的局部电场.高局域电场诱导K+聚集,使活性位点周围CO2浓度升高,大大促进了Au纳米针上的CO生成.基于Au纳米针的局域电场促进了CO2RR的CO生成.本文利用Cu纳米针促进并优化C-C偶联反应来提高C2产物活性和选择性.结果表明,局部电场可以促进C-C偶联过程,进而增强CO2电还原生成C2产物.有限元模拟结果表明,高曲率铜纳米针处存在较强的局部电场;密度泛函理论计算结果表明,强电场能促进C-C耦合过程.在此基础上,制备了一系列不同曲率的Cu催化剂,其中,Cu纳米针(CuNNs)的曲率最高,Cu纳米棒(CuNRs)和Cu纳米颗粒(CuNPs)曲率次之.实验测得CuNNs上吸附的K+浓度最高,证明了纳米针上的局部电场最强.同时,CO吸附传感器测试表明,CuNNs对CO的吸附能力最强,原位傅里叶变换红外光谱显示,CuNNs的*COCO和*CO信号最强.由此可见,高曲率铜纳米针可以诱导高局部电场,从而促进C-C耦合过程.催化性能测试结果表明,在低电位(-0.6 V vs.RHE)下,Cu NNs对CO2RR的生成C2产物的法拉第效率值为44%,约为Cu NPs的2.2倍.综上,本文为CO2RR过程中提高多碳产物提供了新的思路.  相似文献   

4.
氟氯酰与丙烷反应的密度泛函理论研究   总被引:1,自引:0,他引:1  
应用密度泛函理论(DFT), 对氟氯酰(ClF3O)引发丙烷(C3H8)反应生成C3H7自由基或丙醇等产物的机理进行了研究. 在B3PW91/6-311++G(d,p)水平上优化了9个不同反应通道上各驻点物(反应物、中间体、过渡态和产物)的几何构型, 并计算了它们的振动频率和零点振动能. 通过零点能校正计算了各反应路径的活化能, 并应用过渡态理论计算了各反应路径常温下的速率常数k. 计算结果表明: ClF3O与C3H8反应可经过不同路径生成HF, C3H7自由基和C1F2O自由基或C3H7OH和ClF3. 其中, 最可几反应路径为ClF3O分子的中间位F原子进攻丙烷β位H原子的反应, 活化能仅为7.54 kJ/mol, 速率常数为0.153×106 mol-1•dm3•s-1.  相似文献   

5.
有玻璃态和液晶态的胆甾烯基苯并菲的合成及介晶性   总被引:1,自引:0,他引:1  
宋质琼  赵可清  胡平  汪必琴 《化学学报》2008,66(11):1344-1352
将盘状液晶基元苯并菲与手性向列型液晶基元胆甾烯基结合的化合物, 可望出现全新的性质. 合成了含有胆甾烯基的苯并菲化合物C18H6(OC5H11)5(OC5H10COOCh) (2), 2,7-C18H6(OC5H11)4(OC5H10COOCh)2 (4), C18H6(OR)3(OCnH2nCOO- Ch)3 (R=C5H11, C7H15, C9H19, C11H23, n=1, 5, 10) (6a~6f), C18H6(OC5H10COOCh)6 (Ch: cholesteryl) (8). 偏光显微镜和差示扫描量热法对这些化合物的热致介晶性研究结果显示, 化合物 4, 6a~6e具有手性盘状向列相和玻璃态, 8呈现近晶B相(SB)和玻璃态. 随间隔基长度n和烷基链R碳原子数的增加, 化合物玻璃化温度和清亮点呈下降趋势. 随着胆甾烯基数目减少, 化合物的玻璃化温度和清亮点降低.  相似文献   

6.
噻吩光解反应机理的理论研究   总被引:1,自引:0,他引:1  
使用密度泛函理论(DFT)中的B3LYP方法, 采用6-31G**和6-31++G**基组, 对噻吩的光解反应进行了理论研究. 对照实验结果, 我们研究了五个光解通道, 包括生成C4H4+S, C2H2+C2H2S和CS+C3H4的三个闭壳层分子解离通道与生成HCS+C3H3和HS+C4H3的自由基解离通道. 各个可能的反应通道的产物碎片的具体形式得到了确认. 研究发现在基态生成C2H2+C2H2S和在最低三态生成C4H4+S的反应从能量上考虑最为有利, 而实验上观测到的主要产物C2H2+C2H2S主要是在基态上产生的. 通过对比实验结果与计算结果, 我们认为噻吩光解反应机理与所用激发光波长有关.  相似文献   

7.
为分析C1~C3正构醛、 醇化合物在质子转移反应飞行时间质谱(PTR-TOF MS)中的产物离子特征, 考察了不同E/N值(E: 电场强度, N: 气体分子数密度)下C1~C3正构醛、 醇的产物离子种类和强度的变化. 结果表明, 低分子量正构醇类(甲醇、 乙醇和丙醇)倾向于形成质子化聚合物[nMH]+及其失水离子[nMH-H2O]+, 且随着E/N值升高, 醇类会产生较多裂解碎片和多聚体离子. 低分子量正构醛(甲醛、 乙醛和丙醛)主要产生质子化产物[MH]+和一水合质子化产物[M·H3O]+, 高E/N值(>125 Td)会抑制甲醛质子化, 也会抑制其加合产物的生成. 乙醛倾向于形成水加合物, 且随着E/N值增高, 质子化乙醛与水合质子化乙醛的变化趋势相反. 另外, 丙醛在较高的E/N值下会产生一系列聚合物, 如[MH·C2H5]+和[2MH]+. 通过分析C1~C3正构醛、 醇的质子转移反应特征及产物离子形成过程, 获得了C1~C3正构醛、 醇的特征离子和对应的最佳E/N设置值, 为低分子量醛、 醇的定性分析提供了重要依据.  相似文献   

8.
鉴于富勒烯C60所具有的缺电子烯烃的特性1以及CpCo(PPh3)2可与烯或炔反应生成钴杂环有机化合物,2,3 因此我们设想如果用C60代替烯、炔,令其与η5-RC5H4Co(PPh3)2(1) 或η5-RC5H4Co(PPh3)(PhC≡CPh)(2)反应,则应得到一类新型的富勒烯C60有机钴杂环化合物。然而与这一设想不同的是,上述反应并未得到预期的C60钴杂环有机物,所得到的却是另一类新型的有机钴C60衍生物(η2-C60)(η5-RC5H4)CoPPh3(3).此外,我们发现当32同I2反应时,可生成C60或PhC≡CPh配体被I2置换产物η5-RC5H4Co(PPh3)I2(4)。  相似文献   

9.
合成了3种不同结构的CnH2n桥联双核茂钛配合物(CH3)2C[(C5H4)TiCl2(C5H5)]2(3),(CH2)n[(C5H4)TiCl2(C5H5)]2(6,n=3;7,n=4),并用1HNMR进行了表征.发现以甲苯为溶剂时,不仅提高了产率,而且有效地避免了副产物Cp2TiCl2的生成.研究了化合物7/MAO(甲基铝氧烷)催化乙烯聚合的反应,考察了反应条件对催化体系的影响.结果表明,催化活性随着n(Al)/n(Cat.)比的增大而提高,聚乙烯的分子量在n(Al)/n(Cat.)=500和50℃时达到最高值9.0102×104;随着聚合时间的延长,催化活性下降,而产物分子量不断升高;随着温度的上升,50℃时催化活性和聚乙烯的分子量最高,分别为2.4074×105gPE/(molTi·h)和6.8679×104.随着桥联双核茂钛配合物碳桥的增长,催化活性增加,所得聚乙烯的分子量降低.  相似文献   

10.
C2H与HO2双自由基反应的密度泛函理论研究   总被引:1,自引:0,他引:1  
应用量子化学从头算和密度泛函理论(DFT)对C2H与HO2双自由基的单重态反应进行了研究.在UB3LYP/6-311G水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型.在CCSD(T)/6-311G**水平上计算了各物种的单点能,并对总能量进行了零点能校正.研究结果表明,反应物中自由基C2H的边端C进攻自由基HO2的边端O是主要的进攻方式.首先形成了中间体1(HCCOOH),由此经过不同的反应通道可以得到主要产物P1,次要产物P2,P3和P5.生成P1的反应热为-814.40kJ/mol.自由基C2H的中间C进攻自由基HO2的边端O是次要的进攻方式,可以得到产物P4和P6.根据势能面分析,所有反应均是放热反应.  相似文献   

11.
Pyrolysis of cyclohexane was conducted with a plug flow tube reactor in the temperature range of 873-973 K. Based on the experimental data, the mechanism and kinetic model of cyclohexane pyrolysis reaction were proposed. The kinetic analysis shows that overall conversion of cyclohexane is a first order reaction, of which the rate constant increased from 0.0086 to 0.0225 to 0.0623 s-1 with the increase of temperature from 873 to 923 to 973 K, and the apparent activation energy was determined to be 155.0±1.0 kJ mol-1. The mechanism suggests that the cyclohexane is consumed by four processes:the homolysis of C-C bond (Path I), the homolysis of C-H bond (Path II) in reaction chain initia- tion, the H-abstraction of various radicals from the feed molecules in reaction chain propagation (Path III), and the process associated with coke formation (Path IV). The reaction path probability (RPP) ratio of XPath I:XPath II : XPath III : XPath IV was 0.5420:0.0045:0.3897:0.0638 at 873 K, and 0.4336 : 0.0061 : 0.4885 : 0.0718 at 973 K, respectively.  相似文献   

12.
Chemical Transport of Nickel by Indium Iodide At higher temperatures (1273 → 1073 K) the chemical transport of nickel by means of indium iodide going into the zone with lower temperature is caused by the endothermic reaction Ni + InJ3O,g = NiJ2,g + InJ,g At lower temperatures (873 → 973 K) this reaction is superimposed by the formation of gas complexes. These exothermic reactions cause transport in the inversed direction.  相似文献   

13.
The non-oxidative dehydro-oligomerization of methane to higher molecular weight hydrocarbons such as aroma tics and C2 hydrocarbons in a low temperature range of 773-973 K with Mo/HZSM-5,Mo-Zr/HZSM-5 and Mo-W/HZSM-5 catalysts is studied.The means for enhancing the activity and stability of the Mo-containing catalysts under the reaction conditions is reported.Quite a stable methane conversion rate of over 10% with a high selectivity to the higher hydrocarbons has been obtained at a temperature of 973 K.Pure methane conversions of about 5.2% and 2.0% have been obtained at 923 and 873 K,respectively.In addition,accompanied by the C2-C3 mixture,tht- methane reaction can be initiated even at a lower temperature and the conversion rate of methane is enhanced by the presence of tne initiator of C2-C3 hydrocarbons.Compared with methane oxidative coupling to ethylene,the novel way for methane transformation is significant and reasonable for its lower reaction temperatures and high selectivity to the desired prod  相似文献   

14.
The oxidative dehydrogenation of ethane has been investigated on various lead-added calcium hydroxyapatites and the effect of the addition of tetrachloromethane (TCM) into the feedstream has been examined. The catalysts are stable up to 873 K but are converted to the corresponding phosphates at approximately 973 K. The conversions of ethane and the selectivities to C1 and C2 compounds were found to be dependent on the lead contents of the catalysts, both the pretreatment and reaction temperatures, the presence of TCM and the times-on-stream as well as the structural forms of the catalysts. In the absence of TCM the conversion of ethane and the various selectivities show a dependence on the lead content of the catalysts which is similar at 773 and 873 K, but dissimilar at 973 K due, at least in part to the formation of the phosphates at the latter temperature. With TCM in the process feedstream the influence of the chlorapatites which are formed overrides that of the added lead.  相似文献   

15.
1. Introduction As an effective utilization of methane, the methane dehydro-aromatization was focused in the last decade [1-28]. Over the Mo/HZSM-5 bi- functional catalyst at high reaction temperature, methane can be converted into light aromatics (ben- zene and naphthalene) and hydrogen. Mo active species can activate the C—H bond of methane; and HZSM-5 supplies the acid sites for the oligomeriza- tion and cyclization of hydrocarbons to form aromat- ics, and suppresses the deeper condens…  相似文献   

16.
The preparation of silicon nanotubes is a subject of great importance for both the theoretical and experimental work in the nanotube research field since it could lead to a wealth of new physics and chemistry because of the unique properties of silicon as compared with its carbon analogue. Some structures of nanoscale silicon and silicon composites, such as silicon nanowire1, silicon nano-clusters2 and SiC nanorods3 have been discovered and investigated. The silicon nanotubes, however, have …  相似文献   

17.
澳大利亚烟煤热解的拉曼光谱研究   总被引:2,自引:0,他引:2  
采用拉曼光谱考察了澳大利亚烟煤在常压、温度为298~1 473 K条件下,不同热解气氛(Ar和N2)下的热解性能。结合AD/Aall、AG/Aall、WG以及PG-PD等表征参数分析发现,澳大利亚烟煤的热解可以分为三个阶段:298~873 K为固有小分子和大分子键能较弱处断裂分解产生的小分子化合物的析出沉积和挥发;873~1 273 K为大分子化合物裂解挥发和炭化;1 273~1 473 K为焦炭的石墨化。在N2和Ar气氛经1 473 K热处理后,焦炭的不同杂化结构的碳相对含量呈现明显差异。不同保温时间下,其煤焦碳结构演变趋势相似,但保温时间越长,越有利于小分子挥发分在较低温度的挥发。  相似文献   

18.
研究了在Mo/HZSM-5催化剂上添加助剂以及不同的反应预处理温度对甲烷无氧脱氢芳构化反应的影响。实验结果表明,由于第二组分的添加,Mo/HZSM-5催化剂的活性和选择性都得到了较大程度的改善。预处理温度是影响催化剂反应性能的关键因素。Mo-Ru/HZSM-5催化剂经过873K空气预处理后,甲烷在973K的转化率约为10%,催化剂的稳定性也得到较大程度的提高。TPSR实验结果表明,Ru的加入降低了芳烃生成的温度。TPO和DTA实验结果表明,在Mo-Ru/HZSM-5催化剂上可生成较多的碳物种,结合反应结果,可以认为反应过程中生成的碳物种对甲烷的无氧脱氢芳构化反应是起积极作用的  相似文献   

19.
This paper presents the experimental investigation results of the polymetallic copper concentrate oxidation process with the oxygen from the air. Concentrate characterization included chemical analysis, X-ray diffraction (XRD), energy dispersive X-ray fluorescence (EDXRF), and light microscopy. Chemical analysis and EDXRF results showed that the investigated copper concentrate consisted mainly of copper, iron and sulphur, with small amounts of zinc, lead, arsenic and other minor elements. XRD analysis showed that metals were bonded to sulphur in sulphide minerals: chalcopyrite, pyrite, luzonite, sphalerite and enargite. Those minerals were mutually bonded into aggregates, confirmed by light microscopy. The results of DTA/TG analysis were used for determining the mechanism of the oxidation process. Comparison between experimental data obtained by XRD, DTA/TG and data obtained from the phase stability diagrams, implied that the oxidation process of the investigated concentrate can be divided in two stages: the first stage consisted of sulphide oxidation reactions with the characteristic exothermal effects below 973 K while forming sulphates and oxysulphates, and the second stage, which consisted of sulphates and oxysulphates decomposition reactions and forming copper and iron oxides, with endothermal effects above 973 K. Kinetic studies were carried out in isothermal conditions in the temperature range (573–873) K. Calculations were done according to Sharp’s method of reduced half-time reaction. Calculated values for the activation energies were 82 kJ mol?1 for the initial stage of the oxidation process (up to 723 K), and 42 kJ mol?1 for the stage of the process where desulphurization degree reached 68–86 % for the oxidation temperatures 748 K and higher. Calculated activation energy values indicated that the reaction of oxidation is a chemically controlled reaction.  相似文献   

20.
以柠檬酸法制备的Fe-MgO、Co-MgO和Ni-MgO为催化剂,CH4为碳源气,H2为还原气,在873、973和1073 K制备出碳纳米管,通过TEM和拉曼光谱表征,讨论了催化剂、制备温度、反应时间等因素对碳纳米管形貌、产率和内部结构的影响.结果表明:不同的催化剂在相同的温度下制备的碳纳米管的形态和内部结构有很大的差异.其中Fe-MgO催化剂制备的碳纳米管管径粗,且大小不均匀,而Ni-MgO催化剂制备的碳纳米管管径较细、较均匀.碳纳米管的产率随着裂解温度的变化而改变.Fe-MgO催化剂制备碳纳米管的产率随制备温度的升高而提高,而Ni-MgO催化剂制备碳纳米管的产率随制备温度的升高而降低.Fe-MgO催化剂制备碳纳米管,在1073K甚至更高的制备温度才能达到其最高产率.Co-MgO催化剂制备碳纳米管的产率在973 K左右产率较高,而用Ni-MgO催化剂制备碳纳米管,则在873 K甚至更低的制备温度就能达到最高产率.反应时间与碳纳米管的产率不成正比,有一最佳反应时间,如Ni-MgO催化剂的最佳反应时间为2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号