首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
乙炔基自由基C2H与氧气反应的密度泛函理论研究   总被引:7,自引:3,他引:4  
应用量子化学从头算和密度泛函理论(DFT)对C2H自由基和O2的反应进行了研究.在B3LYP/6-311G**水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型,并计算出它们的振动频率和零点振动能(ZPVE).各物种的总能量由CCSD(T)/6-311G**//B3LYP/6-311G**给出,并对能量进行了零点能校正.计算结果表明,反应物中自由基C2H中的边端C进攻O2形成了中间体1 (HCCOO),中间体1是一个加合产物.由中间体1经过不同的反应通道可以生成不同的产物P1 (HCO+CO), P2 (HCCO+O), P3(CO2+CH), P4 (C2O+OH)和P5 (2CO+H).反应通道之间存在着竞争机制.其中P1, P2是主要产物,其次还有一定比例的P5生成,而产物P3, P4的生成几率较低.各条反应通道化学反应热的计算与实验吻合较好.  相似文献   

2.
在B3LYP/6-311G(d,p)和CCSD(T)/6-311G(d,p)水平上给出了HCO+NO2反应详细的势能面信息.计算结果表明,该反应采用两种无垒进攻方式,分别得到两种加合物H(O)CNO2和H(O)CONO.找到7种能量低于反应物且合理的产物及相应的反应路径.通过对热力学和动力学的分析,产物HONO+CO(P2,P3),HNO+CO2(P1)和H+CO2+NO(P6)的形成更为有利.计算结果同实验相符,且有助于深入了解HCO自由基的化学行为.  相似文献   

3.
氟氯酰与丙烷反应的密度泛函理论研究   总被引:1,自引:0,他引:1  
应用密度泛函理论(DFT), 对氟氯酰(ClF3O)引发丙烷(C3H8)反应生成C3H7自由基或丙醇等产物的机理进行了研究. 在B3PW91/6-311++G(d,p)水平上优化了9个不同反应通道上各驻点物(反应物、中间体、过渡态和产物)的几何构型, 并计算了它们的振动频率和零点振动能. 通过零点能校正计算了各反应路径的活化能, 并应用过渡态理论计算了各反应路径常温下的速率常数k. 计算结果表明: ClF3O与C3H8反应可经过不同路径生成HF, C3H7自由基和C1F2O自由基或C3H7OH和ClF3. 其中, 最可几反应路径为ClF3O分子的中间位F原子进攻丙烷β位H原子的反应, 活化能仅为7.54 kJ/mol, 速率常数为0.153×106 mol-1•dm3•s-1.  相似文献   

4.
用密度泛函理论方法研究了O(3P)与O2H反应生成羟基和氧分子的反应机理.在PW91/6-31+G*水平上用梯度解析技术全自由度优化上述反应物、产物和反应路径上的中间体及过渡态几何构型,并通过频率振动分析加以确认,计算IRC反应路径及中间体异构化过程,确定了此反应的可能反应通道.结果表明:该反应是多通道多步骤的强放热反应.首先形成顺式或反式O3H富能中间体,此过程无能垒;然后跨过一个能垒分解成产物OH和O2.通道IM1→TS1比IM2→TS2克服的能垒要大,反应放热372.822kJ.mol-1.IM1TS3IM2可相互转化.  相似文献   

5.
为了探索更长的碳链自由基l-CnH与O2反应的机理, 在CCSD(T)/CC-PVTZ+ZPVE//B3LYP/6-311++G(d,p)的计算水平下, 讨论了当n=5,6时, l-CnH+O2的各个异构化反应通道. 当n=5时, 主要反应通道为碳迁移过程, 生成主要产物为P2(CO2+C4H); 当n=6时, 碳-氧交换[产物为P1(CO+HC5O)]和氧迁移过程[产物为P3(3O+HC6O)]均为主要通道, 并具有很高的竞争性. 将所得结构与l-CnH(n≤4)+O2的反应机理进行了对比.  相似文献   

6.
用密度泛函B3LYP/6-311+G**和高级电子相关的组态相互作用QCISD(T)/6-311+G**方法研究了OXO与X(2P3/2)双自由基反应的微观机理.研究结果表明:该反应存在两个反应通道,产物分别为XO和X2+O2.由于形成产物XO的活化势垒较低,因而是主要反应通道,这与实验观察到的结果是一致的.而形成X2+O2的通道从动力学上看是不利的.  相似文献   

7.
应用量子化学从头计算和密度泛函理论(DFT)对HO2+C2H2反应体系的反应机理进行了研究.在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2+ C2H2反应的二重态反应势能面.计算结果表明,主要反应方式为自由基HO2的H原子和C2H2分子中的C原子结合,经过一系列异构化,最后分解得到主要产物P1 (CH2O+ HCO).此反应是放热反应,化学反应热为-321.99 kJ·mol-1.次要产物为P2 (CO2 +CH3),也是放热反应.  相似文献   

8.
应用密度泛函理论(DFT)对CH3SS与OH自由基单重态反应机理进行了研究.在B3PW91/6-311+G(d,p)水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型,用内禀反应坐标(IRC)计算和频率分析方法对过渡态进行了验证.在QCISD(T)/6-311++G(d,p)水平上计算了各物种的单点能,并对总能量进行了零点能校正.研究结果表明,CH3SS与OH反应为多通道反应,有5条可能的反应通道.反应物首先通过不同的S—O键相互作用形成具有竞争反应机理的中间体IM1和IM2.再经过氢迁移、脱氢和裂解等机理得到主要产物P1(CH2SS+H2O),次要产物P2(CH2S+HSOH),P3(CH3SH+1SO)和P4(CH2SSO+H2),其中最低反应通道的势垒为174.6kJ.mol-1.  相似文献   

9.
用密度泛函B3LYP/6-311+G**和高级电子相关的组态相互作用QCISD(T)/6-311+G**方法研究了OXO与X (2P3/2)双自由基反应的微观机理.研究结果表明该反应存在两个反应通道,产物分别为XO和X2+O2.由于形成产物XO的活化势垒较低,因而是主要反应通道,这与实验观察到的结果是一致的.而形成X2+O2的通道从动力学上看是不利的.  相似文献   

10.
应用密度泛函理论研究了反应通道(a)C2H3+NO→CH3+NCO和(b)C2H3+NO→OH+C2H2N的反应机理.在B3LYP/6-31G(d)水平上优化了反应物、中间体、过滤态、产物的几何构型,通过频率分析确定了11个中间体和10个过渡态.所有的反应物、中间体、过渡态、产物都在CCSD/6-311++G(d,p)水平上进行了单点能较正.并讨论了反应的异构化过程.计算结果表明10是能量最低的中间体,比反应物的能量低308 479kJ/mol;过渡态1/3,2/5,3/4,4/8比反应物的能量高,其中3/4是能量最高的过渡态,比反应物的能量高91 894kJ/mol.通道(a)和(b)的理论放热值分别为111 059和96 619kJ/mol.  相似文献   

11.
采用密度泛函方法,研究了大气臭氧层主要破坏物BrONO2的光解反应机理,在UB3LYP/6-311++G**水平上优化了反应物、产物、中间体和过渡态的几何构型,并在UQCISD(T)/6-311++G**水平上计算了单点能量,为了确证过渡态的真实性,在UB3LYP/6-311++G**水平上进行了内禀反应坐标(IRC)计算和频率分析.研究结果表明,BrONO2的光解反应有两条反应通道,其中生成BrO+NO2的反应活化能较小(14.89 kJ·mol-1),较易发生.  相似文献   

12.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

13.
用量子化学密度泛函理论(DFT)方法,对COS与O2的反应进行了理论研究.在UB3LYP/6—31G^*,UB3LYP/6—311++G^**水平上,优化了反应势能面上各驻点(反应物、产物、中间体和过渡态)的几何构型,在UB3LYP/6—31G^*水平上通过内禀反应坐标(IRC)计算和振动分析,对过渡态进行了确认.在CCSD(T)/6—311++G(2d,2p)水平上进行了单点能量计算,并确定了反应机理.研究结果表明,反应主要产物为CO2和SO.  相似文献   

14.
采用密度泛函B3LYP/6-311G**和高级电子相关耦合簇CCSD(T)/6-311G**方法计算研究了CH3与NO反应机理, 全参数优化了反应势能面上各驻点的几何构型, 用内禀反应坐标(IRC)计算和频率分析方法, 对过渡态进行了验证. 研究结果表明: CH3与NO是一多通道多步骤的复杂反应, 可以分别在单重态和三重态势能面上进行. 经过缔合, 氢转移和离解等复杂过程, 最终得到8种产物(P1P8).  相似文献   

15.
亚甲基自由基(3CH2)与SO反应机理的理论研究   总被引:4,自引:0,他引:4  
白洪涛,黄旭日,于广涛,李吉来,于健康,孙家钟. 亚甲基自由基(3CH2)与SO反应机理的理论研究[J]. 化学学报, 2006, 64(2): 139-144.  相似文献   

16.
采用密度泛函理论B3LYP方法研究了GeH2自由基与HNCS的反应机理,并在B3LYP/6-311++G**水平上对反应物,中间体,过渡态进行了全几何参数优化,通过频率分析和IRC确定中间体和过渡态。为了得到更精确的能量值,用QCISD(T)/6-311++G**方法计算了各个驻点的单点能,计算结果表明单重态的锗烯与异硫氰酸的反应有抽提硫、插入N-H键、抽提亚氨基的路径,而经由三元环中间体的抽提硫反应GeH2+HNCS→IM3→TS2→IM4→TS3→IM5→GeH2S+HNC(P1),反应能垒最低,为主反应通道,甲锗硫醛和异氰氢酸为主产物。锗烯经由四元环中间体抽提硫的反应为竞争反应通道。  相似文献   

17.
白洪涛  黄旭日  于健康  孙家钟 《化学学报》2003,61(11):1765-1768
应用量子化学从头计算和密度泛函理论(DFT)对O_2和CS自由基的反应进行了研 究。在B3LYP/6-311G~(**)水平上计算出了各物种的优化构型、振动频率和零点振 动能(ZPVE)。各物种的总能量由CCSD(T)/6-311G~(**)//B3LYP/6-311G~(**)给出 ,并对总能量进行了零点能校正。计算结果表明:CS自由基中的C端沿着O_2的双键 中线方向进攻,进行加成反应,反应的第一步放出大量的热量(450 kJ/mol),推动 反应继续进行,从稳定的中间体4(Cs)出发,反应主要通过O的相邻位置的迁移生成 P_1(CO+SO)和P_3(COS+O);通过S的相邻位置的迁移生成了重要的反应复合物 (complex 1),进一步离解为产物P_2(CO_2+S)。计算结果可以很好地解释反应机理 。  相似文献   

18.
胡武洪  申伟 《化学学报》2005,63(12):1042-1048,i001
用量子化学密度泛函理论和QCISD(Quadratic configuration interaction calculation)方法,对0(^3P)与CH2CHCl的反应进行了理论研究.在UB3LYP/6—311 G(d,p),UB3LYP/6—31 (3df,3pd)计算水平上,优化了反应物、产物、中间体和过渡态的几何构型,并在UQCISD(T)/6—311 G(2df,2pO)水平上计算了单点能量.为了确证过渡态的真实性,在UB3LYP/6—311 G(3df,3pd)水平上进行了内禀坐标(IRC)计算和频率分析,并确定了反应机理.研究结果表明,反应主要产物为CH2CHO和Cl.  相似文献   

19.
The reaction mechanism of CH2F radical with HNCO was investigated by density functional theory (DFT)at the B3LYP/6-311++G(d,p) level. The geometries of the reactants, the intermediates, the transition states and the products were optimized. The transition states were verified through the vibration analysis.The relative energies were calculated at the QCISD(T)/6-311++G**//B3LYP/6-311++G(d,p) level. Seven feasible reaction pathways of the reaction were studied. The results indicate that the pathway (5) is the most favorable to occur, so it is the main pathway of the reaction.  相似文献   

20.
气相中O3与HSO自由基之间的相互作用及其反应在大气化学中非常重要.在DFT-B3LYP/6-311++G**和MP2/6-311++G**水平上求得O3+HSO复合物势能面上的稳定构型,B3LYP方法得到了三种构型(复合物Ⅰ,Ⅱ和Ⅲ),而MP2方法只能得到一种构犁(复合物Ⅱ).在复合物Ⅰ和Ⅲ中,HSO单元中的1H原子作为质子供体.与O3分子中的端基O原子作为质子受体相互作用,形成红移氢键复合物;而在复合物Ⅱ中,虽与复合物Ⅰ和Ⅲ中具有相间的质子供体和质子受体,却形成了蓝移氢键复合物.B3LYP/6-311++G**水平上计算的单体间相互作用能的计算考虑了基组重甍误差(BSSE)和零点振动能(ZPVE)校正,其值在-3.37到-4.55 kJ·mol-1之间.采用自然键轨道理论(NBO)对单体间相互作用的本质进行了考查,并通过分子中原子理论(AIM)分析了三种复合物中氢键的电子密度拓扑性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号